Lp-convergence rates to nonlinear diffusion waves for quasilinear equations with nonlinear damping

被引:9
作者
Geng, Shifeng [1 ]
Zhang, Lina [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 01期
基金
中国国家自然科学基金;
关键词
Convergence rates; Nonlinear diffusion waves; Quasilinear equations; Nonlinear damping; HYPERBOLIC CONSERVATION-LAWS; SYSTEM;
D O I
10.1007/s00033-013-0392-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the asymptotic behavior of the solution for quasilinear hyperbolic equations with nonlinear damping. The main novelty in this paper is that we obtain the L (p) (2 a parts per thousand currency sign p a parts per thousand currency sign +a) convergence rates of the solution to the quasilinear hyperbolic equations, and we need none of the additional technical assumptions for the nonlinear damping f(v) given by Li and Saxton (Q Appl Math 61:295-313, 2003).
引用
收藏
页码:31 / 50
页数:20
相关论文
共 19 条