Clustering based Voiced-Unvoiced-Silence Detection in Speech using Temporal and Spectral Parameters

被引:0
作者
Mondal, Sujoy [1 ]
Das Barman, Abhirup [2 ]
机构
[1] RCC Inst Informat Technol, Dept ECE, Kolkata, India
[2] Univ Calcutta, Inst Radio Phys & Elect, Kolkata, India
来源
2015 IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN) | 2015年
关键词
Gaussian similarity function; Spectral Clustering; TIMIT database; Voiced unvoiced silence detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reports automatic segmentation of voiced, unvoiced and silence portion of speech on TIMIT data base. Waveform and frequency domain parameters are used to form multi dimensional feature space. Short time energy threshold of unvoiced segment is used to separate out silence or background from speech. The Gaussian similarity function based spectral clustering is used to find error performance of voiced/unvoiced (V/UV) portion of the speech. The classification accuracy of V/UV is measured and the result is compared with the other techniques available in the literatures. The proposed technique provides at least 98.3% V/UV detection accuracy.
引用
收藏
页码:390 / 394
页数:5
相关论文
共 50 条
  • [11] Corner detection of contour images using spectral clustering
    Li, Xi
    Hu, Weiming
    Zhang, Zhongfei
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1165 - +
  • [12] Document filtering based on spectral clustering for speech recognition language model
    Takahashi, Shinya
    Morimoto, Tsuyoshi
    Tsuruta, Naoyuki
    [J]. IMECS 2007: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2007, : 393 - +
  • [13] MOBILE PHONE CLUSTERING FROM ACQUIRED SPEECH RECORDINGS USING DEEP GAUSSIAN SUPERVECTOR AND SPECTRAL CLUSTERING
    Li, Yanxiong
    Zhang, Xue
    Li, Xianku
    Feng, Xiaohui
    Yang, Jichen
    Chen, Aiwu
    He, Qianhua
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2137 - 2141
  • [14] COMMUNITY DETECTION USING SPECTRAL CLUSTERING ON SPARSE GEOSOCIAL DATA
    van Gennip, Yves
    Hunter, Blake
    Ahn, Raymond
    Elliott, Peter
    Luh, Kyle
    Halvorson, Megan
    Reid, Shannon
    Valasik, Matthew
    Wo, James
    Tita, George E.
    Bertozzi, Andrea L.
    Brantingham, P. Jeffrey
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (01) : 67 - 83
  • [15] Occlusion Boundary Detection of Deep Image by Using Spectral Clustering
    Zhang Shihui
    Yang Meng
    Dong Lijian
    [J]. ACTA OPTICA SINICA, 2018, 38 (09)
  • [16] SAR Image Change Detection Using Watershed and Spectral Clustering
    Niu, Ruican
    Jiao, L. C.
    Wang, Guiting
    Feng, Jie
    [J]. MIPPR 2011: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2011, 8006
  • [17] SPECTRAL CLUSTERING BASED UNSUPERVISED CHANGE DETECTION IN SAR IMAGES
    Zhang, Xiangrong
    Li, Zemin
    Hou, Biao
    Jiao, Licheng
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 712 - 715
  • [18] Bad Data Detection Algorithm for PMU Based on Spectral Clustering
    Yang, Zhiwei
    Liu, Hao
    Bi, Tianshu
    Yang, Qixun
    [J]. JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2020, 8 (03) : 473 - 483
  • [19] Bad Data Detection Algorithm for PMU Based on Spectral Clustering
    Zhiwei Yang
    Hao Liu
    Tianshu Bi
    Qixun Yang
    [J]. Journal of Modern Power Systems and Clean Energy, 2020, 8 (03) : 473 - 483
  • [20] Detection method of abnormal data in cube based on spectral clustering
    Song S.-J.
    Fan M.
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (10): : 2917 - 2922