Convergence Analysis of the Generalized Alternating Direction Method of Multipliers with Logarithmic-Quadratic Proximal Regularization

被引:5
作者
Li, Min [1 ]
Li, Xinxin [2 ]
Yuan, Xiaoming [2 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210096, Jiangsu, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized alternating direction method of multipliers; Logarithmic-quadratic proximal method; Convergence rate; Variational inequality; DECOMPOSITION METHODS; POINT ALGORITHM;
D O I
10.1007/s10957-014-0567-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider combining the generalized alternating direction method of multipliers, proposed by Eckstein and Bertsekas, with the logarithmic-quadratic proximal method proposed by Auslender, Teboulle, and Ben-Tiba for solving a variational inequality with separable structures. For the derived algorithm, we prove its global convergence and establish its worst-case convergence rate measured by the iteration complexity in both the ergodic and nonergodic senses.
引用
收藏
页码:218 / 233
页数:16
相关论文
共 30 条
[11]  
Gabay D., 1976, Computers & Mathematics with Applications, V2, P17, DOI 10.1016/0898-1221(76)90003-1
[12]  
GLOWINSKI R, 1975, REV FR AUTOMAT INFOR, V9, P41
[13]  
GLOWINSKI R., 1984, Numerical Methods for Nonlinear Variational Problems
[14]  
GOLSHTEIN EG, 1979, MATH PROGRAM STUD, V10, P86, DOI 10.1007/BFb0120845
[15]  
He B.S., 2013, NONERGODIC CONVERGEN
[16]   ON THE O(1/n) CONVERGENCE RATE OF THE DOUGLAS-RACHFORD ALTERNATING DIRECTION METHOD [J].
He, Bingsheng ;
Yuan, Xiaoming .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :700-709
[17]  
He BS, 2006, J COMPUT MATH, V24, P33
[18]   A new inexact alternating directions method for monotone variational inequalities [J].
He, BS ;
Liao, LZ ;
Han, DR ;
Yang, H .
MATHEMATICAL PROGRAMMING, 2002, 92 (01) :103-118
[19]   A variable-penalty alternating directions method for convex optimization [J].
Kontogiorgis, S ;
Meyer, RR .
MATHEMATICAL PROGRAMMING, 1998, 83 (01) :29-53
[20]  
MARTINET B, 1970, REV FR AUTOMAT INFOR, V4, P154