Convergence Analysis of the Generalized Alternating Direction Method of Multipliers with Logarithmic-Quadratic Proximal Regularization

被引:5
作者
Li, Min [1 ]
Li, Xinxin [2 ]
Yuan, Xiaoming [2 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210096, Jiangsu, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized alternating direction method of multipliers; Logarithmic-quadratic proximal method; Convergence rate; Variational inequality; DECOMPOSITION METHODS; POINT ALGORITHM;
D O I
10.1007/s10957-014-0567-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider combining the generalized alternating direction method of multipliers, proposed by Eckstein and Bertsekas, with the logarithmic-quadratic proximal method proposed by Auslender, Teboulle, and Ben-Tiba for solving a variational inequality with separable structures. For the derived algorithm, we prove its global convergence and establish its worst-case convergence rate measured by the iteration complexity in both the ergodic and nonergodic senses.
引用
收藏
页码:218 / 233
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 2003, Finite-Dimensional Variational Inequalities and Complementarity Problems
[2]   Entropic proximal decomposition methods for convex programs and variational inequalities [J].
Auslander, A ;
Teboulle, M .
MATHEMATICAL PROGRAMMING, 2001, 91 (01) :33-47
[3]   A logarithmic-quadratic proximal method for variational inequalities [J].
Auslender, A ;
Teboulle, M ;
Ben-Tiba, S .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) :31-40
[4]  
Bertsekas D., 2015, Parallel and distributed computation: numerical methods
[5]  
Boyd S., 2011, FOUND TRENDS MACH LE, V3, P1, DOI DOI 10.1561/2200000016
[6]   A proximal point algorithm revisit on the alternating direction method of multipliers [J].
Cai XingJu ;
Gu GuoYong ;
He BingSheng ;
Yuan XiaoMing .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) :2179-2186
[7]  
Chan T. F., 1978, TECHNICAL REPORT
[8]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[9]  
Facchinei F., 2003, FINITE DIMENSIONAL V, P345
[10]  
Fukushima M., 1992, Comput. Optim. Appl, V1, P93, DOI 10.1007/BF00247655