Super-resolution images fusion via compressed sensing and low-rank matrix decomposition

被引:10
|
作者
Ren, Kan [1 ]
Xu, Fuyuan [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect Engn & Optoelect Technol, Nanjing, Jiangsu, Peoples R China
关键词
Super-resolution; Multisource images fusion; Compressed sensing; Low-rank decomposition; Dictionary learning; SPARSE; RECONSTRUCTION; RECOVERY;
D O I
10.1016/j.infrared.2014.11.006
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Most of available image fusion approaches cannot achieve higher spatial resolution than the multisource images. In this paper we propose a novel simultaneous images super-resolution and fusion approach via the recently developed compressed sensing and multiscale dictionaries learning technology. Under the sparse prior of image patches and the framework of compressed sensing, multisource images fusion is reduced to a task of signal recovery from the compressive measurements. Then a set of multiscale dictionaries are learned from some groups of example high-resolution (HR) image patches via a nonlinear optimization algorithm. Moreover, a linear weights fusion rule is advanced to obtain the fused high-resolution image at each scale. Finally the high-resolution image is derived by performing a low-rank decomposition on the recovered high-resolution images at multiple scales. Some experiments are taken to investigate the performance of our proposed method, and the results prove its superiority to the counterparts. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [1] Compressed Sensing and Low-Rank Matrix Decomposition in Multisource Images Fusion
    Ren, Kan
    Xu, Fuyuan
    Gu, Guohua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [2] Low-Rank Tensor Tucker Decomposition for Hyperspectral Images Super-Resolution
    Jia, Huidi
    Guo, Siyu
    Li, Zhenyu
    Chen, Xi'ai
    Han, Zhi
    Tang, Yandong
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT II, 2022, 13456 : 502 - 512
  • [3] Spectral Super-Resolution via Deep Low-Rank Tensor Representation
    Dian, Renwei
    Liu, Yuanye
    Li, Shutao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 11
  • [4] Image Super-Resolution via Adaptive Regularization Term of Compressed Sensing
    Liu, Yintao
    Ren, Chao
    Shao, Hongjuan
    Liu, Qirui
    Zhang, Yan
    IEEE ACCESS, 2024, 12 : 90418 - 90431
  • [5] A super-resolution reconstruction algorithm of infrared pedestrian images via compressed sensing
    Zou, Erbo
    Lei, Bo
    Jing, Nan
    Tan, Hai
    REAL-TIME PHOTONIC MEASUREMENTS, DATA MANAGEMENT, AND PROCESSING III, 2019, 10822
  • [6] Super-resolution reconstruction of hyperspectral images using empirical mode decomposition and compressed sensing
    Zhou Ziyong
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [7] Robust Video Super-resolution Using Low-rank Matrix Completion
    Liu, Chenyu
    Zhang, Xianlin
    Liu, Yang
    Li, Xueming
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2017), 2017, : 181 - 185
  • [8] Single image super-resolution via self-similarity and low-rank matrix recovery
    Wang, Hong
    Li, Jianwu
    Dong, Zhengchao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (12) : 15181 - 15199
  • [9] Super-resolution ghost imaging via compressed sensing
    Li Long-Zhen
    Yao Xu-Ri
    Liu Xue-Feng
    Yu Wen-Kai
    Zhai Guang-Jie
    ACTA PHYSICA SINICA, 2014, 63 (22) : 224201
  • [10] Spectral Super-Resolution via Deep Low-Rank Tensor Representation
    Dian, Renwei
    Liu, Yuanye
    Li, Shutao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (03) : 5140 - 5150