Sums of products of hypergeometric Bernoulli numbers

被引:35
作者
Kamano, Ken [1 ]
机构
[1] Salesian Polytech, Dept Gen Educ, Machida, Tokyo 1940215, Japan
关键词
Bernoulli numbers; Sums of products; Confluent hypergeometric function; EXPONENTIAL FUNCTION; POLYNOMIALS; IDENTITIES; SEQUENCES;
D O I
10.1016/j.jnt.2010.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a formula for sums of products of hypergeometric Bernoulli numbers. This formula is proved by using special values of multiple analogues of hypergeometric zeta functions. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2259 / 2271
页数:13
相关论文
共 20 条
[1]   Convolution identities and lacunary recurrences for Bernoulli numbers [J].
Agoh, Takashi ;
Dilcher, Karl .
JOURNAL OF NUMBER THEORY, 2007, 124 (01) :105-122
[2]   Higher-order recurrences for Bernoulli numbers [J].
Agoh, Takashi ;
Dilcher, Karl .
JOURNAL OF NUMBER THEORY, 2009, 129 (08) :1837-1847
[3]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[4]   Sums of products of generalized Bernoulli polynomials [J].
Chen, KW .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 208 (01) :39-52
[5]   Sums of products of Bernoulli numbers [J].
Dilcher, K .
JOURNAL OF NUMBER THEORY, 1996, 60 (01) :23-41
[6]  
Eie M, 1998, REV MAT IBEROAM, V14, P167
[8]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[9]   HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES [J].
Hassen, Abdul ;
Nguyen, Hieu D. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) :767-774
[10]   The error zeta function [J].
Hassen, Abdul ;
Nguyen, Hieu D. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (03) :439-453