共 50 条
Cell Cycle-specific Measurement of γH2AX and Apoptosis After Genotoxic Stress by Flow Cytometry
被引:7
|作者:
Perez, Ramon Lopez
[1
,2
]
Muenz, Franziska
[1
,2
]
Kroschke, Jonas
[1
,2
]
Brauer, Jannek
[1
,2
]
Nicolay, Nils H.
[1
,2
,3
]
Huber, Peter E.
[1
,2
]
机构:
[1] German Canc Res Ctr, CCU Mol & Radiat Oncol, Heidelberg, Germany
[2] Heidelberg Univ Hosp, Dept Radiat Oncol, Heidelberg, Germany
[3] Freiburg Univ, Dept Radiat Oncol, Med Ctr, Freiburg, Germany
来源:
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
|
2019年
/
151期
关键词:
This Month in JoVE;
Issue;
151;
DNA double-strand breaks;
cell cycle distribution;
apoptosis;
DNA damage response;
ionizing radiation;
carbon ion radiation;
genotoxic stress;
flow cytometry;
MESENCHYMAL STEM-CELLS;
STRAND-BREAK REPAIR;
DNA-DAMAGE;
RADIATION;
FOCI;
GLIOBLASTOMA;
RADIOTHERAPY;
COMBINATION;
RESISTANCE;
CANCER;
D O I:
10.3791/59968
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The presented method or slightly modified versions have been devised to study specific treatment responses and side effects of various anticancer treatments as used in clinical oncology. It enables a quantitative and longitudinal analysis of the DNA damage response after genotoxic stress, as induced by radiotherapy and a multitude of anti-cancer drugs. The method covers all stages of the DNA damage response, providing endpoints for induction and repair of DNA double-strand breaks (DSBs), cell cycle arrest and cell death by apoptosis in case of repair failure. Combining these measurements provides information about cell cycle-dependent treatment effects and thus allows an in-depth study of the interplay between cellular proliferation and coping mechanisms against DNA damage. As the effect of many cancer therapeutics including chemotherapeutic agents and ionizing radiation is limited to or strongly varies according to specific cell cycle phases, correlative analyses rely on a robust and feasible method to assess the treatment effects on the DNA in a cell cycle-specific manner. This is not possible with single-end-point assays and an important advantage of the presented method. The method is not restricted to any particular cell line and has been thoroughly tested in a multitude of tumor and normal tissue cell lines. It can be widely applied as a comprehensive genotoxicity assay in many fields of oncology besides radio-oncology, including environmental risk factor assessment, drug screening and evaluation of genetic instability in tumor cells.
引用
收藏
页数:10
相关论文