Correlated motion and the effect of distal mutations in dihydrofolate reductase

被引:193
作者
Rod, TH [1 ]
Radkiewicz, JL [1 ]
Brooks, CL [1 ]
机构
[1] Scripps Res Inst, Dept Biol Mol, La Jolla, CA 92037 USA
关键词
D O I
10.1073/pnas.1230801100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate. The catalytic rate in this system has been found to be significantly affected by mutations far from the site of chemical activity in the enzyme [Rajagopalan, P. T. R, Lutz, S., and Benkovic, S. J. (2002) Biochemistry 41, 12618-12628]. On the basis of extensive computer simulations for wild-type DHIFIR from Escherichia coli and four mutants (G121S, G121V, M42F, and M42F/G121S), we show that key parameters for catalysis are changed. The parameters we study are relative populations of different conformations sampled and hydrogen bonds. We find that the mutations result in long-range structural perturbations, rationalizing the effects that the mutations have on the kinetics of the enzyme. Such perturbations also provide a rationalization for the reported nonadditivity effect for double mutations. We finally examine the role a structural perturbation will have on the hydride transfer step. On the basis of our new findings, we discuss the role of coupled motions between distant regions in the enzyme, which previously was reported by Radkiewicz and Brooks.
引用
收藏
页码:6980 / 6985
页数:6
相关论文
共 27 条
[1]   Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Hammes-Schiffer, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3283-3293
[2]   Network of coupled promoting motions in enzyme catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Rajagopalan, PTR ;
Benkovic, SJ ;
Hammes-Schiffer, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2794-2799
[3]   A KINETIC-STUDY OF WILD-TYPE AND MUTANT DIHYDROFOLATE REDUCTASES FROM LACTOBACILLUS-CASEI [J].
ANDREWS, J ;
FIERKE, CA ;
BIRDSALL, B ;
OSTLER, G ;
FEENEY, J ;
ROBERTS, GCK ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1989, 28 (14) :5743-5750
[4]  
[Anonymous], 2002, Oxidative Phosphorylation
[5]   Internal enzyme motions as a source of catalytic activity: Rate-promoting vibrations and hydrogen tunneling [J].
Antoniou, D ;
Schwartz, SD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (23) :5553-5558
[6]   LONG-RANGE STRUCTURAL EFFECTS IN A 2ND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE-REDUCTASE [J].
BROWN, KA ;
HOWELL, EE ;
KRAUT, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11753-11756
[7]   Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant [J].
Cameron, CE ;
Benkovic, SJ .
BIOCHEMISTRY, 1997, 36 (50) :15792-15800
[8]   Identification of a protein-promoting vibration in the reaction catalyzed by horse liver alcohol dehydrogenase [J].
Caratzoulas, S ;
Mincer, JS ;
Schwartz, SD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (13) :3270-3276
[9]   ART-2 - SELF-ORGANIZATION OF STABLE CATEGORY RECOGNITION CODES FOR ANALOG INPUT PATTERNS [J].
CARPENTER, GA ;
GROSSBERG, S .
APPLIED OPTICS, 1987, 26 (23) :4919-4930
[10]   Promoting modes and demoting modes in enzyme-catalyzed proton transfer reactions: A study of models and realistic systems [J].
Cui, QA ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (32) :7927-7947