Z2 topological term, the global anomaly, and the two-dimensional symplectic symmetry class of anderson localization

被引:97
作者
Ryu, Shinsei [1 ]
Mudry, Christopher
Obuse, Hideaki
Furusaki, Akira
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland
[3] RIKEN, Condensed Matter Theory Lab, Wako, Saitama 3510198, Japan
关键词
D O I
10.1103/PhysRevLett.99.116601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss, for a two-dimensional Dirac Hamiltonian with a random scalar potential, the presence of a Z(2) topological term in the nonlinear sigma model encoding the physics of Anderson localization in the symplectic symmetry class. The Z(2) topological term realizes the sign of the Pfaffian of a family of Dirac operators. We compute the corresponding global anomaly, i.e., the change in the sign of the Pfaffian by studying a spectral flow numerically. This Z(2) topological effect can be relevant to graphene when the impurity potential is long ranged and, also, to the two-dimensional boundaries of a three-dimensional lattice model of Z(2) topological insulators in the symplectic symmetry class.
引用
收藏
页数:4
相关论文
共 30 条
[1]   Presence of perfectly conducting channel in metallic carbon nanotubes [J].
Ando, T ;
Suzuura, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (11) :2753-2760
[2]   Impurity scattering in carbon nanotubes - Absence of back scattering [J].
Ando, T ;
Nakanishi, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (05) :1704-1713
[3]   Berry's phase and absence of back scattering in carbon nanotubes [J].
Ando, T ;
Nakanishi, T ;
Saito, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (08) :2857-2862
[4]  
BARDARSON JH, IN PRESS PHYS REV LE
[5]   Quantum transport in disordered wires: Equivalence of the one-dimensional sigma model and the Dorokhov-Mello-Pereyra-Kumar equation [J].
Brouwer, PW ;
Frahm, K .
PHYSICAL REVIEW B, 1996, 53 (03) :1490-1501
[6]   ANOMALIES AND FERMION ZERO MODES ON STRINGS AND DOMAIN-WALLS [J].
CALLAN, CG ;
HARVEY, JA .
NUCLEAR PHYSICS B, 1985, 250 (03) :427-436
[7]  
Efetov K.B., 1980, Sov. Phys.-JETP, V52, P568
[8]  
ESSIN AM, ARXIV07050172V1
[9]   Integrable sigma models with θ = π -: art. no. 104429 [J].
Fendley, P .
PHYSICAL REVIEW B, 2001, 63 (10) :19
[10]   PHYSICAL REALIZATION OF THE PARITY ANOMALY IN CONDENSED MATTER PHYSICS [J].
FRADKIN, E ;
DAGOTTO, E ;
BOYANOVSKY, D .
PHYSICAL REVIEW LETTERS, 1986, 57 (23) :2967-2970