Optimal Control Problems for a Semilinear Evolution System with Infinite Delay

被引:15
作者
Mokkedem, Fatima Zahra [1 ,2 ]
Fu, Xianlong [2 ]
机构
[1] Aboubekr Belkaid Univ, Univ Tlemcen, Lab Syst Dynam & Applicat, Dept Math, Tilimsen 13000, Algeria
[2] East China Normal Univ, Shanghai Key Lab PMMP, Dept Math, Shanghai 200241, Peoples R China
关键词
Evolution system; Infinite delay; Fundamental solution; Optimal control; Time optimal control; APPROXIMATE CONTROLLABILITY; EQUATIONS; EXISTENCE;
D O I
10.1007/s00245-017-9420-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the standard optimal control and time optimal control problems for a class of semilinear evolution systems with infinite delay. We first establish the results of existence and uniqueness of mild solution and the compactness of the solution operator for the control system.Then, based on these results, we investigate the optimal control problem with integral cost function and the time optimal control problem respectively.Under some conditions we show the existence of optimal controls for the both cases of bounded and unbounded admissible control sets.We also obtain the existence of time optimal control to a target set.In addition, a convergence theorem of time optimal controls to a point target set is proved.Finally, an example is given to show the application of the main results.
引用
收藏
页码:41 / 67
页数:27
相关论文
共 32 条
[1]  
Ahmed N-U., 1981, Optimal Control of Distributed Parameters Systems
[2]  
项筱玲, 2000, Acta Mathematicae Applicatae Sinica, V16, P27
[3]  
[Anonymous], OPTIMAL CONTROL
[4]   Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces [J].
Caicedo, A. ;
Cuevas, C. ;
Mophou, G. M. ;
N'Guerekata, G. M. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (01) :1-24
[5]  
Curtain R. F., 1978, Infinite dimensional linear systems theory
[6]   EXISTENCE OF SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS WITH INFINITE DELAY [J].
Dong, Qixiang ;
Li, Gang .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) :43-54
[7]  
Engel K.-J., 2000, ONE PARAMETER SEMIGR
[8]   An optimal control problem with nonlocal conditions for the weakly nonlinear hyperbolic equation [J].
Guliyev, H. F. ;
Tagiyev, H. T. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2013, 34 (02) :216-235
[9]  
Hale J. K., 1978, Funkcialaj Ekvacioj, V21, P11, DOI [https://doi.org/10.1007/BFb0064317, DOI 10.1007/BFB0064317]
[10]   Regularity of solutions of abstract retarded functional differential equations with unbounded delay [J].
Henriquez, HR .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :513-531