State and parameter estimation in nonlinear systems as an optimal tracking problem

被引:38
作者
Creveling, Daniel R. [1 ,2 ]
Gill, Philip E. [3 ]
Abarbanel, Henry D. I. [1 ,2 ,4 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
关键词
parameter estimation; synchronization;
D O I
10.1016/j.physleta.2007.12.051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In verifying and validating models of nonlinear processes it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, we present a framework for connecting a data signal with a model in a way that minimizes the required coupling yet allows the estimation of unknown parameters in the model. The need to evaluate unknown parameters in models of nonlinear physical, biophysical, and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. Our approach builds on existing work that uses synchronization as a tool for parameter estimation. We address some of the critical issues in that work and provide a practical framework for finding an accurate solution. In particular, we show the equivalence of this problem to that of tracking within an optimal control framework. This equivalence allows the application of powerful numerical methods that provide robust practical tools for model development and validation. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:2640 / 2644
页数:5
相关论文
共 20 条
  • [1] Barclay A, 1998, INT SER NUMER MATH, V124, P207
  • [2] Parameter estimation using balanced synchronization
    Creveling, Daniel R.
    Jeanne, James M.
    Abarbane, Henry D. I.
    [J]. PHYSICS LETTERS A, 2008, 372 (12) : 2043 - 2047
  • [3] Identifiability and identification of chaotic systems based on adaptive synchronization
    Dedieu, H
    Ogorzalek, MJ
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10): : 948 - 962
  • [4] SNOPT: An SQP algorithm for large-scale constrained optimization (Reprinted from SIAM Journal Optimization, vol 12, pg 979-1006, 2002)
    Gill, PE
    Murray, W
    Saunders, MA
    [J]. SIAM REVIEW, 2005, 47 (01) : 99 - 131
  • [5] DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR-PROGRAMMING AND COLLOCATION
    HARGRAVES, CR
    PARIS, SW
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1987, 10 (04) : 338 - 342
  • [6] Huang DB, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.067201
  • [7] CHAOS IN THE COLPITTS OSCILLATOR
    KENNEDY, MP
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1994, 41 (11): : 771 - 774
  • [8] Kirk DE., 2004, Optimal Control Theory: An Introduction
  • [9] Synchronization-based approach for estimating all model parameters of chaotic systems
    Konnur, R
    [J]. PHYSICAL REVIEW E, 2003, 67 (02): : 4
  • [10] Use of synchronization and adaptive control in parameter estimation from a time series
    Maybhate, A
    Amritkar, RE
    [J]. PHYSICAL REVIEW E, 1999, 59 (01): : 284 - 293