Robust registration for change detection

被引:0
作者
Darkner, Sune [1 ]
Hansen, Dan Witzner [1 ]
Paulsen, Rasmus R. [1 ]
Larsen, Rasmus [1 ]
机构
[1] Tech Univ Denmark, DK-2800 Lyngby, Denmark
来源
MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3 | 2008年 / 6914卷
关键词
intra-subject registration; large scale hypothesis testing; non-parametric clustering; change detection;
D O I
10.1117/12.770106
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We address the problem of intra-subject registration for change detection. The goal is to separate stationary and changing subsets to be able to robustly perform rigid registration on the stationary subsets and thus improve the subsequent change detection. An iterative approach using a hybrid of parametric and non-parametric statistics is presented. The method uses non-parametric clustering and large scale hypothesis testing with estimation of the empirical null hypothesis. The method is successfully applied to 3D surface scans of human ear impressions containing true changes as well as data with synthesized changes. It is shown that the method improves registration and is capable of reducing the difference between registration using different norms.
引用
收藏
页数:8
相关论文
共 15 条
  • [1] Andresen PR, 1999, LECT NOTES COMPUT SC, V1679, P533
  • [2] Kernel-based object tracking
    Comaniciu, D
    Ramesh, V
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) : 564 - 577
  • [3] Comaniciu D, 2000, PROC CVPR IEEE, P142, DOI 10.1109/CVPR.2000.854761
  • [4] COOTES T, 2004, P BRIT MACH VIS C, V1, P447
  • [5] Cootes TF, 2004, LECT NOTES COMPUT SC, V2034, P316
  • [6] DARKNER S, 2007, SPRINGER LECT NOTE B
  • [7] Large-scale simultaneous hypothesis testing: The choice of a null hypothesis
    Efron, B
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) : 96 - 104
  • [8] FISHER E, 1997, P SPIE MED IMAGING, V3034
  • [9] FUKUNAGA K, 1975, IEEE T INFORM THEORY, V21, P32, DOI 10.1109/TIT.1975.1055330
  • [10] MODERSITSKI J, 2004, NUMERICAL METHODS IM