Fitting scattered data on sphere-like surfaces using spherical splines

被引:78
作者
Alfeld, P
Neamtu, M
Schumaker, LL
机构
[1] UNIV UTAH, DEPT MATH, SALT LAKE CITY, UT 84112 USA
[2] VANDERBILT UNIV, DEPT MATH, NASHVILLE, TN 37240 USA
基金
美国国家科学基金会;
关键词
approximation; data fitting; homogeneous splines; multivariate splines; spherical splines; sphere-like surfaces; interpolation; minimal energy splines; least squares approximation; Powell-Sabin quadratic splines; Clough-Tocher cubic splines; quintic piecewise polynomials; Laplace-Beltrami operator; spherical triangulation;
D O I
10.1016/0377-0427(96)00034-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spaces of polynomial splines defined on planar triangulations are very useful tools for fitting scattered data in the plane. Recently, [4, 5], using homogeneous polynomials, we have developed analogous spline spaces defined on triangulations on the sphere and on sphere-like surfaces. Using these spaces, it is possible to construct analogs of many of the classical interpolation and fitting methods. Here we examine some of the more interesting ones is detail. For interpolation, we discuss macro-element methods and minimal energy splines, and for fitting, we consider discrete least squares and penalized least squares.
引用
收藏
页码:5 / 43
页数:39
相关论文
共 82 条
[1]  
Alfeld P., 1984, Computer-Aided Geometric Design, V1, P257, DOI 10.1016/0167-8396(84)90012-8
[2]   AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES [J].
ALFELD, P ;
PIPER, B ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :891-911
[3]  
Alfeld P, 1995, MATHEMATICAL METHODS FOR CURVES AND SURFACES, P11
[4]  
ALFELD P, 1984, 2707 MATH RES CTR
[5]  
ALFELD P, IN PRESS COMPUT AIDE
[6]  
ALFELD P, IN PRESS SIAM J MATH
[7]  
[Anonymous], 1993, JOINT M CAN MATH SOC
[8]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[9]  
BAJAJ C, 1995, 95028 TR PURD U
[10]  
BAJAJ C, IN PRESS COMPUT GRAP, V29