CONCENTRATION OF THE INFORMATION IN DATA WITH LOG-CONCAVE DISTRIBUTIONS

被引:55
作者
Bobkov, Sergey [1 ]
Madiman, Mokshay [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Yale Univ, Dept Stat, New Haven, CT 06511 USA
关键词
Concentration; entropy; log-concave distributions; asymptotic equipartition property; Shannon-McMillan-Breiman theorem; MCMILLAN-BREIMAN THEOREM; ERGODIC THEOREM; SPACES; PROOF;
D O I
10.1214/10-AOP592
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A concentration property of the functional - log f (X) is demonstrated, when a random vector X has a log-concave density f on R-n. This concentration property implies in particular an extension of the Shannon-McMillan-Breiman strong ergodic theorem to the class of discrete-time stochastic processes with log-concave marginals.
引用
收藏
页码:1528 / 1543
页数:16
相关论文
共 21 条
[1]   A SANDWICH PROOF OF THE SHANNON-MCMILLAN-BREIMAN THEOREM [J].
ALGOET, PH ;
COVER, TM .
ANNALS OF PROBABILITY, 1988, 16 (02) :899-909
[2]  
[Anonymous], 1961, PAC J MATH
[3]   PROPERTIES OF PROBABILITY-DISTRIBUTIONS WITH MONOTONE HAZARD RATE [J].
BARLOW, RE ;
PROSCHAN, F ;
MARSHALL, AW .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (02) :375-&
[4]   THE STRONG ERGODIC THEOREM FOR DENSITIES - GENERALIZED SHANNON-MCMILLAN-BREIMAN THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1985, 13 (04) :1292-1303
[5]  
Bobkov S, 1996, ANN PROBAB, V24, P35
[6]  
Bobkov S. G., 2010, CAN ONE INVERT HOLDE
[7]  
Bobkov SG, 2003, LECT NOTES MATH, V1807, P37
[8]  
BOBKOV SG, 2010, IEEE T INFO IN PRESS
[9]   COMPLEMENTS OF LYAPUNOVS INEQUALITY [J].
BORELL, C .
MATHEMATISCHE ANNALEN, 1973, 205 (04) :323-331
[10]   CONVEX MEASURES ON LOCALLY CONVEX-SPACES [J].
BORELL, C .
ARKIV FOR MATEMATIK, 1974, 12 (02) :239-252