Enhancing Multi-Center Generalization of Machine Learning-Based Depression Diagnosis From Resting-State fMRI

被引:27
作者
Nakano, Takashi [1 ]
Takamura, Masahiro [2 ]
Ichikawa, Naho [2 ]
Okada, Go [2 ]
Okamoto, Yasumasa [2 ]
Yamada, Makiko [3 ,4 ]
Suhara, Tetsuya [3 ]
Yamawaki, Shigeto [2 ]
Yoshimoto, Junichiro [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Sci & Technol, Div Informat Sci, Ikoma, Japan
[2] Hiroshima Univ, Dept Psychiat & Neurosci, Hiroshima, Japan
[3] Natl Inst Quantum & Radiol Sci & Technol, Inst Quantum Life Sci, Chiba, Japan
[4] Natl Inst Quantum & Radiol Sci & Technol, Natl Inst Radiol Sci, Dept Funct Brain Imaging, Chiba, Japan
来源
FRONTIERS IN PSYCHIATRY | 2020年 / 11卷
关键词
depression; functional connectivity; machine learning; harmonization; multi-center fMRI; resting state fMRI; MAJOR DEPRESSION; GLOBAL SIGNAL; CORTICAL SULCI; HARMONIZATION; CONNECTIVITY; RECOGNITION; RELIABILITY; VALIDITY; REMOVAL; IMPACT;
D O I
10.3389/fpsyt.2020.00400
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Resting-state fMRI has the potential to help doctors detect abnormal behavior in brain activity and to diagnose patients with depression. However, resting-state fMRI has a bias depending on the scanner site, which makes it difficult to diagnose depression at a new site. In this paper, we propose methods to improve the performance of the diagnosis of major depressive disorder (MDD) at an independent site by reducing the site bias effects using regression. For this, we used a subgroup of healthy subjects of the independent site to regress out site bias. We further improved the classification performance of patients with depression by focusing on melancholic depressive disorder. Our proposed methods would be useful to apply depression classifiers to subjects at completely new sites.
引用
收藏
页数:10
相关论文
共 41 条
[1]   The inferential impact of global signal covariates in functional neuroimaging analyses [J].
Aguirre, GK ;
Zarahn, E ;
D'Esposito, M .
NEUROIMAGE, 1998, 8 (03) :302-306
[2]  
American Psychiatric Association, 2013, DIAGN STAT MAN MENT, DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/appi.books.9780890425596]
[3]  
Bishop CM., 2006, Pattern Recognition and Machine Learning
[4]  
Breiman L, 1984, Classification and Regression Trees, V1st, DOI DOI 10.1201/9781315139470
[5]   Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment [J].
Chen, Chi-Hua ;
Ridler, Khanum ;
Suckling, John ;
Williams, Steve ;
Fu, Cynthia H. Y. ;
Merlo-Pich, Emilio ;
Bullmore, Edward T. .
BIOLOGICAL PSYCHIATRY, 2007, 62 (05) :407-414
[6]   Removal of confounding effects of global signal in functional MRI analyses [J].
Desjardins, AE ;
Kiehl, KA ;
Liddle, PF .
NEUROIMAGE, 2001, 13 (04) :751-758
[7]   Resting-state connectivity biomarkers define neurophysiological subtypes of depression [J].
Drysdale, Andrew T. ;
Grosenick, Logan ;
Downar, Jonathan ;
Dunlop, Katharine ;
Mansouri, Farrokh ;
Meng, Yue ;
Fetcho, Robert N. ;
Zebley, Benjamin ;
Oathes, Desmond J. ;
Etkin, Amit ;
Schatzberg, Alan F. ;
Sudheimer, Keith ;
Keller, Jennifer ;
Mayberg, Helen S. ;
Gunning, Faith M. ;
Alexopoulos, George S. ;
Fox, Michael D. ;
Pascual-Leone, Alvaro ;
Voss, Henning U. ;
Casey, B. J. ;
Dubin, Marc J. ;
Liston, Conor .
NATURE MEDICINE, 2017, 23 (01) :28-38
[8]   ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI [J].
Feis, Rogier A. ;
Smith, Stephen M. ;
Filippini, Nicola ;
Douaud, Gwenaelle ;
Dopper, Elise G. P. ;
Heise, Verena ;
Trachtenberg, Aaron J. ;
van Swieten, John C. ;
van Buchem, Mark A. ;
Rombouts, Serge A. R. B. ;
Mackay, Clare E. .
FRONTIERS IN NEUROSCIENCE, 2015, 9
[9]   Harmonization of cortical thickness measurements across scanners and sites [J].
Fortin, Jean-Philippe ;
Cullen, Nicholas ;
Sheline, Yvette I. ;
Taylor, Warren D. ;
Aselcioglu, Irem ;
Cook, Philip A. ;
Adams, Phil ;
Cooper, Crystal ;
Fava, Maurizio ;
McGrath, Patrick J. ;
McInnis, Melvin ;
Phillips, Mary L. ;
Trivedi, Madhukar H. ;
Weissman, Myrna M. ;
Shinohara, Russell T. .
NEUROIMAGE, 2018, 167 :104-120
[10]   Harmonization of multi-site diffusion tensor imaging data [J].
Fortin, Jean-Philippe ;
Parker, Drew ;
Tunc, Birkan ;
Watanabe, Takanori ;
Elliott, Mark A. ;
Ruparel, Kosha ;
Roalf, David R. ;
Satterthwaite, Theodore D. ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Schultz, Robert T. ;
Verma, Ragini ;
Shinohara, Russell T. .
NEUROIMAGE, 2017, 161 :149-170