Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems

被引:49
作者
Amar Dahoumane, Si [1 ]
Wujcik, Evan K. [2 ]
Jeffryes, Clayton [3 ]
机构
[1] Yachay Tech Univ, Sch Life Sci & Biotechnol, San Miguel De Urcuqui, Ecuador
[2] Lamar Univ, Dan F Smith Dept Chem Engn, Mat Engn & Nanosensor MEAN Lab, Beaumont, TX 77710 USA
[3] Lamar Univ, Dan F Smith Dept Chem Engn, Nanobiomat & Bioproc NAB Lab, Beaumont, TX 77710 USA
关键词
Algae; Bioprocess; Biosensors; Nanobiomaterials; Nanoparticles; Photobioreactors; SILVER NANOPARTICLES; GOLD NANOPARTICLES; BIOLOGICAL SYNTHESIS; FILAMENTOUS CYANOBACTERIA; EXTRACELLULAR SYNTHESIS; GRAPHENE OXIDE; QUANTUM DOTS; MARINE ALGA; BIOMEDICAL APPLICATIONS; MEDIATED BIOSYNTHESIS;
D O I
10.1016/j.enzmictec.2016.06.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Phototrophic cell or tissue cultures can produce nanostructured noble metals, oxides and chalcogenides at ambient temperatures and pressures in an aqueous environment and without the need for potentially toxic solvents or the generation of dangerous waste products. These "green" synthesized nanobiomaterials can be used to fabricate biosensors and bio-reporting tools, theranostic vehicles, medical imaging agents, as well as tissue engineering scaffolds and biomaterials. While successful at the lab and experimental scales, significant barriers still inhibit the development of higher capacity processes. While scalability issues in traditional algal bioprocess engineering are well known, such as the controlled delivery of photons and gas-exchange, the large-scale algal synthesis of nanomaterials introduces additional parameters to be understood, i.e., nanoparticle (NP) formation kinetics and mechanisms, biological transport of metal cations and the effect of environmental conditions on the final form of the NPs. Only after a clear understanding of the kinetics and mechanisms can the strain selection, photobioreactor type, medium pH and ionic strength, mean light intensity and other relevant parameters be specified for an optimal bioprocess. To this end, this mini-review will examine the current best practices and understanding of these phenomena to establish a path forward for this technology. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 149 条
[1]   Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata) [J].
Abboud, Y. ;
Saffaj, T. ;
Chagraoui, A. ;
El Bouari, A. ;
Brouzi, K. ;
Tanane, O. ;
Ihssane, B. .
APPLIED NANOSCIENCE, 2014, 4 (05) :571-576
[2]  
Abdel-Raouf N., 2016, ARAB J CHEM
[3]   Extracellular matrix assembly in diatoms (bacillariophyceae).: V.: Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum [J].
Abdullahi, AS ;
Underwood, GJC ;
Gretz, MR .
JOURNAL OF PHYCOLOGY, 2006, 42 (02) :363-378
[4]   MALDI-TOF MS analysis of the extracellular polysaccharides released by the diatom Thalassiosira pseudonana under various nutrient conditions [J].
Ai, Xin-Xin ;
Liang, Jun-Rong ;
Gao, Ya-Hui ;
Lo, Samuel Chun-Lap ;
Lee, Fred Wang-Fat ;
Chen, Chang-Ping ;
Luo, Chun-Shan ;
Du, Chao .
JOURNAL OF APPLIED PHYCOLOGY, 2015, 27 (02) :673-684
[5]   A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles [J].
Aioub, Mena ;
El-Sayed, Mostafa A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) :1258-1264
[6]   Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris [J].
Aksu, Z .
PROCESS BIOCHEMISTRY, 2002, 38 (01) :89-99
[7]   Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga [J].
Amar Dahoumane, Si ;
Yepremian, Claude ;
Djediat, Chakib ;
Coute, Alain ;
Fievet, Fernand ;
Coradin, Thibaud ;
Brayner, Roberta .
JOURNAL OF NANOPARTICLE RESEARCH, 2016, 18 (03)
[8]   Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress [J].
Applerot, Guy ;
Lellouche, Jonathan ;
Lipovsky, Anat ;
Nitzan, Yeshayahu ;
Lubart, Rachel ;
Gedanken, Aharon ;
Banin, Ehud .
SMALL, 2012, 8 (21) :3326-3337
[9]   Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis [J].
Arora, Sumit ;
Tyagi, Nikhil ;
Bhardwaj, Arun ;
Rusu, Lilia ;
Palanki, Rohan ;
Vig, Komal ;
Singh, Shree R. ;
Singh, Ajay P. ;
Palanki, Srinivas ;
Miller, Michael E. ;
Carter, James E. ;
Singh, Seema .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2015, 11 (05) :1265-1275
[10]   Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract [J].
Azizi, Susan ;
Ahmad, Mansor B. ;
Namvar, Farideh ;
Mohamad, Rosfarizan .
MATERIALS LETTERS, 2014, 116 :275-277