共 91 条
Human and mouse muscle transcriptomic analyses identify insulin receptor mRNA downregulation in hyperinsulinemia-associated insulin resistance
被引:20
作者:
Cen, Haoning Howard
[1
]
Hussein, Bahira
[2
]
Botezelli, Jose Diego
[1
]
Wang, Su
[1
]
Zhang, Jiashuo Aaron
[1
]
Noursadeghi, Nilou
[1
]
Jessen, Niels
[3
,4
]
Rodrigues, Brian
[2
]
Timmons, James A.
[5
,6
]
Johnson, James D.
[1
]
机构:
[1] Univ British Columbia, Life Sci Inst, Dept Cellular & Physiol Sci, 2350 Hlth Sci Mall, Vancouver, BC V6T 1Z3, Canada
[2] Univ British Columbia, Fac Pharmaceut Sci, Vancouver, BC, Canada
[3] Aarhus Univ, Dept Biomed, Aarhus, Denmark
[4] Aarhus Univ Hosp, Steno Diabet Ctr Aarhus, Aarhus, Denmark
[5] Augur Precis Med LTD, Stirling Univ Innovat Pk, Stirling, Scotland
[6] Queen Mary Univ London, William Harvey Res Inst, London, England
基金:
芬兰科学院;
关键词:
hyperinsulinemia;
insulin receptor;
insulin resistance;
insulin signaling;
SIN3A;
GENE-EXPRESSION;
DIABETES-MELLITUS;
GLUCOSE-TRANSPORT;
SECRETION;
PROTEIN;
BETA;
SENSITIVITY;
INTERNALIZATION;
GLUCAGON;
PACKAGE;
D O I:
10.1096/fj.202100497RR
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of 'hyperinsulinemia' and 'starvation' programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.
引用
收藏
页数:21
相关论文