EARTH SCIENCE DEEP LEARNING: APPLICATIONS AND LESSONS LEARNED

被引:0
作者
Maskey, Manil [1 ]
Ramachandran, Rahul [1 ]
Miller, J. J. [2 ]
Zhang, Jia [3 ]
Gurung, Iksha [2 ]
机构
[1] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[2] Univ Alabama, Huntsville, AL 35899 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
Deep learning; neural network; Earth science; classification; large-scaled labeled data; training;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. The Data Science and Informatics Group (DSIG) at the NASA Marshall Space Flight Center (MSFC), has been using deep learning for a variety of Earth science applications. This paper provides examples of the applications and also addresses some of the challenges that have been encountered.
引用
收藏
页码:1760 / 1763
页数:4
相关论文
共 14 条
[1]  
[Anonymous], CONV NEUR NETW LENET
[2]  
[Anonymous], IEEE INT C COGN COMP
[3]  
[Anonymous], COMPUTERS GEOSCIENCE
[4]  
[Anonymous], 1998, HDB BRAIN THEORY NEU
[5]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[6]  
Deng J, 2009, 2009 IEEE C COMP VIS, P248
[7]  
DVORAK VF, 1975, MON WEATHER REV, V103, P420, DOI 10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO
[8]  
2
[9]  
Herzmann D., 2004, IOWA ENV MESONET
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90