Modularity of Erdos-Renyi random graphs

被引:20
|
作者
McDiarmid, Colin [1 ]
Skerman, Fiona [2 ,3 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Univ Bristol, Heilbronn Inst Math Res, Bristol, Avon, England
关键词
modularity; community detection; random graphs; robustness;
D O I
10.1002/rsa.20910
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in G. The modularity q*(G) of the graph G is defined to be the maximum over all vertex partitions of the modularity score, and satisfies 0 <= q*(G)G(n,p) with n vertices and edge-probability p. Two key findings are that the modularity is 1+o(1) with high probability (whp) for np up to 1+o(1) and no further; and when np >= 1 and p is bounded below 1, it has order (np)(-1/2) whp, in accord with a conjecture by Reichardt and Bornholdt in 2006. We also show that the modularity of a graph is robust to changes in a few edges, in contrast to the sensitivity of optimal vertex partitions.
引用
收藏
页码:211 / 243
页数:33
相关论文
共 50 条
  • [41] Self-switching random walks on Erdos-Rényi random graphs feel the phase transition
    Iacobelli, G.
    Ost, G.
    Takahashi, D. Y.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 183
  • [42] MODULARITY OF CYCLES AND PATHS IN GRAPHS
    ARKIN, EM
    PAPADIMITRIOU, CH
    YANNAKAKIS, M
    JOURNAL OF THE ACM, 1991, 38 (02) : 255 - 274
  • [43] Modularity of regular and treelike graphs
    McDiarmid C.
    Skerman F.
    Skerman, Fiona (fiona.skerman@math.uu.se), 2018, Oxford University Press (06) : 596 - 619
  • [44] Modularity of regular and treelike graphs
    McDiarmid, Colin
    Skerman, Fiona
    JOURNAL OF COMPLEX NETWORKS, 2018, 6 (04) : 596 - 619
  • [45] Modularity of Some Distance Graphs
    M. M. Ipatov
    M. M. Koshelev
    A. M. Raigorodskii
    Doklady Mathematics, 2020, 101 : 60 - 61
  • [46] Modularity of Some Distance Graphs
    Ipatov, M. M.
    Koshelev, M. M.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2020, 101 (01) : 60 - 61
  • [47] Modularity of minor-free graphs
    Lason, Michal
    Sulkowska, Malgorzata
    JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 728 - 736
  • [48] Concentration and regularization of random graphs
    Le, Can M.
    Levina, Elizaveta
    Vershynin, Roman
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (03) : 538 - 561
  • [49] Erdos graphs resolve Fine's canonicity problem
    Goldblatt, R
    Hodkinson, I
    Venema, Y
    BULLETIN OF SYMBOLIC LOGIC, 2004, 10 (02) : 186 - 208
  • [50] RANDOM GRAPHS WITH A RANDOM BIJECTION
    Anbo, Yuki
    TSUKUBA JOURNAL OF MATHEMATICS, 2011, 35 (01) : 143 - 151