Modularity of Erdos-Renyi random graphs

被引:20
|
作者
McDiarmid, Colin [1 ]
Skerman, Fiona [2 ,3 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Univ Bristol, Heilbronn Inst Math Res, Bristol, Avon, England
关键词
modularity; community detection; random graphs; robustness;
D O I
10.1002/rsa.20910
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in G. The modularity q*(G) of the graph G is defined to be the maximum over all vertex partitions of the modularity score, and satisfies 0 <= q*(G)G(n,p) with n vertices and edge-probability p. Two key findings are that the modularity is 1+o(1) with high probability (whp) for np up to 1+o(1) and no further; and when np >= 1 and p is bounded below 1, it has order (np)(-1/2) whp, in accord with a conjecture by Reichardt and Bornholdt in 2006. We also show that the modularity of a graph is robust to changes in a few edges, in contrast to the sensitivity of optimal vertex partitions.
引用
收藏
页码:211 / 243
页数:33
相关论文
共 50 条
  • [1] Shotgun assembly of Erdos-Renyi random graphs
    Gaudio, Julia
    Mossel, Elchanan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [2] Lifshitz tails for spectra of Erdos-Renyi random graphs
    Khorunzhiy, O
    Kirsch, W
    Müller, P
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (01): : 295 - 309
  • [3] On large deviation properties of Erdos-Renyi random graphs
    Engel, A
    Monasson, R
    Hartmann, AK
    JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 387 - 426
  • [4] Concentration of the spectral norm of Erdos-Renyi random graphs
    Lugosi, Gabor
    Mendelson, Shahar
    Zhivotovskiy, Nikita
    BERNOULLI, 2020, 26 (03) : 2253 - 2274
  • [5] Treewidth of Erdos-Renyi random graphs, random intersection graphs, and scale-free random graphs
    Gao, Yong
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 566 - 578
  • [6] Connectivity of inhomogeneous random key graphs intersecting inhomogeneous Erdos-Renyi graphs
    Eletreby, Rashad
    Yagan, Osman
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2920 - 2924
  • [7] Fluctuations of the Magnetization for Ising Models on Dense Erdos-Renyi Random Graphs
    Kabluchko, Zakhar
    Lowe, Matthias
    Schubert, Kristina
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (01) : 78 - 94
  • [8] Evolution of tag-based cooperation on Erdos-Renyi random graphs
    Lima, F. W. S.
    Hadzibeganovic, Tarik
    Stauffer, Dietrich
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (06):
  • [9] Fluctuations for the partition function of Ising models on Erdos-Renyi random graphs
    Kabluchko, Zakhar
    Loewe, Matthias
    Schubert, Kristina
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2017 - 2042
  • [10] SPECTRAL CLUSTERING FOR MULTICLASS ERDOS-RENYI GRAPHS
    Belabbas, Mohamed-Ali
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 5422 - 5425