Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction
被引:51
作者:
Cai, Jian-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Cai, Jian-Feng
[1
]
Qu, Xiaobo
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Fujian Prov Key Lab Plasma & Magnet Resonance, Dept Elect Sci, POB 979, Xiamen 361005, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Qu, Xiaobo
[2
]
Xu, Weiyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USAHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Xu, Weiyu
[3
]
Ye, Gui-Bo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Math, Iowa City, IA 52242 USAHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Ye, Gui-Bo
[4
]
机构:
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Plasma & Magnet Resonance, Dept Elect Sci, POB 979, Xiamen 361005, Peoples R China
[3] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
Low-rank Hankel matrix completion;
Super resolution;
Spectral compressed sensing;
Random Gaussian projection;
D O I:
10.1016/j.acha.2016.02.003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper explores robust recovery of a superposition of R distinct complex exponential functions with or without damping factors from a few random Gaussian projections. We assume that the signal of interest is of 2N - 1 dimensions and R < 2N - 1. This framework covers a large class of signals arising from real applications in biology, automation, imaging science, etc. To reconstruct such a signal, our algorithm is to seek a low-rank Hankel matrix of the signal by minimizing its nuclear norm subject to the consistency on the sampled data. Our theoretical results show that a robust recovery is possible as long as the number of projections exceeds O(Rln(2) N). No incoherence or separation condition is required in our proof. Our method can be applied to spectral compressed sensing where the signal of interest is a superposition of R complex sinusoids. Compared to existing results, our result here does not need any separation condition on the frequencies, while achieving better or comparable bounds on the number of measurements. Furthermore, our method provides theoretical guidance on how many samples are required in the state-of-the-art non-uniform sampling in NMR spectroscopy. The performance of our algorithm is further demonstrated by numerical experiments. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Candes, Emmanuel J.
Li, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Li, Xiaodong
Ma, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab 145, Urbana, IL 61801 USA
Microsoft Res Asia, Visual Comp Grp, Beijing 100080, Peoples R ChinaStanford Univ, Dept Math, Stanford, CA 94305 USA
Ma, Yi
Wright, John
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res Asia, Visual Comp Grp, Beijing 100080, Peoples R ChinaStanford Univ, Dept Math, Stanford, CA 94305 USA
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Candes, Emmanuel J.
Li, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Li, Xiaodong
Ma, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab 145, Urbana, IL 61801 USA
Microsoft Res Asia, Visual Comp Grp, Beijing 100080, Peoples R ChinaStanford Univ, Dept Math, Stanford, CA 94305 USA
Ma, Yi
Wright, John
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res Asia, Visual Comp Grp, Beijing 100080, Peoples R ChinaStanford Univ, Dept Math, Stanford, CA 94305 USA