Internal waves in an unbounded non-Boussinesq flow

被引:1
作者
McHugh, John P. [1 ]
机构
[1] Univ New Hampshire, Durham, NH 03824 USA
关键词
Internal waves; Stratified flow; Laurent expansion; PERMANENT FORM;
D O I
10.1016/j.aml.2011.01.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weakly nonlinear internal waves in an unbounded non-Boussinesq flow with uniform stratification are treated with a Laurent-type expansion. The expansion eliminates the problem encountered with a traditional expansion in wave amplitude where higher harmonics grow exponentially faster with higher order. The results show that the second-order wave correction to the linear estimate of the wave speed of internal waves in an unbounded layer is always negative, meaning that higher amplitude waves travel slower. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1069 / 1074
页数:6
相关论文
共 11 条
[1]   INTERNAL WAVES OF FINITE AMPLITUDE AND PERMANENT FORM [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1966, 25 :241-&
[2]  
Franke PM, 1999, J ATMOS SCI, V56, P3010, DOI 10.1175/1520-0469(1999)056<3010:NBITPO>2.0.CO
[3]  
2
[4]  
GRIMSHAW R, 2010, ENV STRATIFIED FLOWS
[5]  
Long R. R., 1953, Tellus, V5, P42, DOI [DOI 10.1111/J.2153-3490.1953.TB01035.X, 10.3402/tellusa.v5i1.8563]
[6]  
Long R.R., 1965, Tellus, V17, P46
[7]   PROGRESSIVE INTERNAL WAVES OF PERMANENT FORM [J].
McHugh, John .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (04) :1017-1031
[9]  
WALTERSCHEID RL, 1990, J ATMOS SCI, V47, P101, DOI 10.1175/1520-0469(1990)047<0101:NEOAUP>2.0.CO
[10]  
2