Approximation by p-Faber polynomials in the weighted Smirnov class EP (G,ω) and the Bieberbach polynomials

被引:71
作者
Israfilov, DM [1 ]
机构
[1] Balikesir Univ, Fac Arts & Sci, Dept Math, TR-10100 Balikesir, Turkey
关键词
Faber polynomials; weighted Smirnov class; Bieberbach polynomials; conformal mapping; uniform convergence;
D O I
10.1007/s003650010030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G subset of C be a finite domain with a regular Jordan boundary L. In this work, the approximation properties of a p-Faber polynomial series of functions in the weighted Smirnov class EP (G, W) are studied and the rate of polynomial approximation, for f epsilon E-p(G, omega) by the weighted integral modulus of continuity, is estimated. Some application of this result to the uniform convergence of the Bieberbach polynomials rr, in a closed domain (G) over bar with a smooth boundary L is given.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 31 条
[1]   DEGREE OF POLYNOMIAL APPROXIMATION IN EP(D) [J].
ANDERSSON, JE .
JOURNAL OF APPROXIMATION THEORY, 1977, 19 (01) :61-68
[2]  
Andrievskii V. V., 1983, THEORY MAP APPROX FU, P3
[3]  
Andrievskii V. V, 1983, UKR MATH J, V35, P233
[4]  
APLER LY, 1960, GOS IZDAT FIZ MAT LI, P272
[5]  
Cavus A., 1995, APPROX THEORY APPL, V11, P105
[6]  
Davis M., 1984, Journal of Shellfish Research, V4, P17
[7]  
DUREN PL, 1970, THEPRY HP SPACES
[8]  
Dyn'kin E. M., 1981, COMPLEX ANAL SPECTRA, P90
[9]  
DYNKIN EM, 1983, ITOGI NAUKI TEKHN MA, V21, P42
[10]  
DYNKIN EM, 1978, ZAP NAUCH SEM LENING, V73, P70