(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC-(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics with low thermal conductivity

被引:24
|
作者
Liu, Chao [1 ,2 ]
Yang, Yue-yang [1 ]
Zhou, Zhi-fang [1 ]
Nan, Ce-wen [1 ]
Lin, Yuan-hua [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Cent South Univ, Natl Key Lab Sci & Technol Natl Def High Strength, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
electrical conductivity; high-entropy ceramics; MAX phases; microstructure; spark plasma sintering; thermal conductivity; AL-C; PHASES; TI2ALC; TI; OPPORTUNITIES; EXPLORATION; STRATEGIES; MECHANISM; TI3ALC2; (TI;
D O I
10.1111/jace.18252
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, the microstructure and physicochemical properties of high-entropy ceramics have received much interest by the combination of multiple principal elements. Herein, (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)(2)AlC-(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics (M2AlC-MC HECs) were prepared by the spark plasma sintering (SPS) technique, attributing to the structural and chemical diversity of MAX phases. The microstructure of M2AlC-MC HECs was characterized from micron to atomic scales, and the phase composition of M2AlC-MC HECs was analyzed by a combination of Maud and Rietveld analysis. The results indicate the successful solid solution of Ti, V, Cr, Nb, and Ta atoms in the M-site of the 211-MAX configuration, and all the samples show a classic layered structure. The weight percentage of (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)(2)AlC in the M2AlC-MC HECs was more than 90%. Furthermore, the thermoelectric properties of M2AlC-MC HECs were investigated for the first time in this study, and the electrical conductivity and thermal conductivity of HECs are 3278 S cm(-1) and 2.78 W m(-1) K(-1)at 298 K, respectively.
引用
收藏
页码:2764 / 2771
页数:8
相关论文
共 50 条
  • [41] Unveiling the Transporting Mechanism of (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C at Room Temperature
    Liu, Tao
    Lei, Liwen
    Zhang, Jinyong
    Li, Neng
    CRYSTALS, 2023, 13 (04)
  • [42] Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2000?C
    Ni, Na
    Ding, Qi
    Shi, Yinchun
    Jiang, Juan
    Li, Ling
    Zhang, Ruiji
    Liu, Xuanzhen
    Fan, Yuchi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (06) : 2306 - 2319
  • [43] Oxyacetylene ablation of (Hf0.2Ti0.2Zr0.2Ta0.2Nb0.2)C at 1350-2050 °C
    Chen, Zuozheng
    Wang, Haoxuan
    Li, Chenran
    Ren, Ke
    Wang, Yiguang
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (06) : 2700 - 2707
  • [44] Influence of novel carbon sources on microstructure and properties of (Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)C high-entropy carbide ceramic
    Li, Saisai
    Wu, Qianfang
    Zhan, Jie
    Chen, Ruoyu
    Mao, Aiqin
    Zheng, Cuihong
    Wen, Haiming
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (04) : 1890 - 1897
  • [45] Preparation of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C high-entropy ceramic nanopowders via liquid-phase precursor
    Xie, Chenyi
    Miao, Huaming
    Wan, Fan
    Wang, Yanfei
    Li, Duan
    Liu, Rongjun
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (07) : 5105 - 5114
  • [46] A (Hf0.2Mo0.2Nb0.2Ta0.2Ti0.2)C system high-entropy ceramic with excellent mechanical and tribological properties prepared at low temperature
    Sun, Qichun
    Chen, Wenyuan
    Zhu, Shengyu
    Cheng, Jun
    Tan, Hui
    Chen, Juanjuan
    Guo, Jie
    Yang, Jun
    TRIBOLOGY INTERNATIONAL, 2023, 184
  • [47] Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential
    Dai, Fu-Zhi
    Wen, Bo
    Sun, Yinjie
    Xiang, Huimin
    Zhou, Yanchun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 43 (43): : 168 - 174
  • [48] Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential
    Pikalova, N. S.
    Balyakin, I. A.
    Yuryev, A. A.
    Rempel, A. A.
    DOKLADY PHYSICAL CHEMISTRY, 2024, 514 (01) : 9 - 14
  • [49] Theoretical prediction on thermal and mechanical properties of high entropy(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential
    Fu-Zhi Dai
    Bo Wen
    Yinjie Sun
    Huimin Xiang
    Yanchun Zhou
    JournalofMaterialsScience&Technology, 2020, 43 (08) : 168 - 174
  • [50] Effect of Sintering Process on Microstructure and Properties of (Zr0.2Ta0.2Ti0.2Cr0.2Hf0.2)Si2 High-Entropy Silicide Ceramics
    Zhang, Zihao
    Yi, Huaigan
    Liang, Mengtian
    Xie, Linying
    Yin, Bingbing
    Yang, Yi
    COATINGS, 2024, 14 (10)