(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC-(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics with low thermal conductivity

被引:26
作者
Liu, Chao [1 ,2 ]
Yang, Yue-yang [1 ]
Zhou, Zhi-fang [1 ]
Nan, Ce-wen [1 ]
Lin, Yuan-hua [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Cent South Univ, Natl Key Lab Sci & Technol Natl Def High Strength, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
electrical conductivity; high-entropy ceramics; MAX phases; microstructure; spark plasma sintering; thermal conductivity; AL-C; PHASES; TI2ALC; TI; OPPORTUNITIES; EXPLORATION; STRATEGIES; MECHANISM; TI3ALC2; (TI;
D O I
10.1111/jace.18252
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, the microstructure and physicochemical properties of high-entropy ceramics have received much interest by the combination of multiple principal elements. Herein, (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)(2)AlC-(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics (M2AlC-MC HECs) were prepared by the spark plasma sintering (SPS) technique, attributing to the structural and chemical diversity of MAX phases. The microstructure of M2AlC-MC HECs was characterized from micron to atomic scales, and the phase composition of M2AlC-MC HECs was analyzed by a combination of Maud and Rietveld analysis. The results indicate the successful solid solution of Ti, V, Cr, Nb, and Ta atoms in the M-site of the 211-MAX configuration, and all the samples show a classic layered structure. The weight percentage of (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)(2)AlC in the M2AlC-MC HECs was more than 90%. Furthermore, the thermoelectric properties of M2AlC-MC HECs were investigated for the first time in this study, and the electrical conductivity and thermal conductivity of HECs are 3278 S cm(-1) and 2.78 W m(-1) K(-1)at 298 K, respectively.
引用
收藏
页码:2764 / 2771
页数:8
相关论文
共 39 条
[1]   Efficient exploration of the High Entropy Alloy composition-phase space [J].
Abu-Odeh, A. ;
Galvan, E. ;
Kirk, T. ;
Mao, H. ;
Chen, Q. ;
Mason, P. ;
Malak, R. ;
Arroyave, R. .
ACTA MATERIALIA, 2018, 152 :41-57
[2]   High-entropy M2AlC-MC (M=Ti, Zr, Hf, Nb, Ta) composite: Synthesis and microstructures [J].
Bao, Weichao ;
Wang, Xin-Gang ;
Ding, Haojie ;
Lu, Ping ;
Zhu, Chenxi ;
Zhang, Guo-Jun ;
Xu, Fangfang .
SCRIPTA MATERIALIA, 2020, 183 :33-38
[3]   Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5 [J].
Barsoum, MW ;
Ali, M ;
El-Raghy, T .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2000, 31 (07) :1857-1865
[4]   The MN+1AXN phases:: A new class of solids;: Thermodynamically stable nanolaminates [J].
Barsoum, MW .
PROGRESS IN SOLID STATE CHEMISTRY, 2000, 28 (1-4) :201-281
[5]   Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC [J].
Barsoum, MW ;
Salama, I ;
El-Raghy, T ;
Golczewski, J ;
Porter, WD ;
Wang, H ;
Seifert, HJ ;
Aldinger, F .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (09) :2775-2779
[6]   Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides [J].
Braun, Jeffrey L. ;
Rost, Christina M. ;
Lim, Mina ;
Giri, Ashutosh ;
Olson, David H. ;
Kotsonis, George N. ;
Stan, Gheorghe ;
Brenner, Donald W. ;
Maria, Jon-Paul ;
Hopkins, Patrick E. .
ADVANCED MATERIALS, 2018, 30 (51)
[7]   Medium-entropy (Ti, Zr, Hf)2SC MAX phase [J].
Chen, Ke ;
Chen, Youhu ;
Zhang, Jianning ;
Song, Yujie ;
Zhou, Xiaobing ;
Li, Mian ;
Fan, Xiaomeng ;
Zhou, Jie ;
Huang, Qing .
CERAMICS INTERNATIONAL, 2021, 47 (06) :7582-7587
[8]   Thermoelectric thin films: Promising strategies and related mechanism on boosting energy conversion performance [J].
Chen, Xuxuan ;
Zhou, Zhifang ;
Lin, Yuan-Hua ;
Nan, Cewen .
JOURNAL OF MATERIOMICS, 2020, 6 (03) :494-512
[9]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[10]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534