Positive-Part Moments via the Fourier-Laplace Transform

被引:10
作者
Pinelis, Iosif [1 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
基金
美国国家科学基金会;
关键词
Positive-part moments; Characteristic functions; Fourier transforms; Fourier-Laplace transforms; Integral representations; INEQUALITY;
D O I
10.1007/s10959-010-0276-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integral expressions for positive-part moments E X-+(p) (p > 0) of random variables X are presented, in terms of the Fourier-Laplace or Fourier transforms of the distribution of X. A necessary and sufficient condition for the validity of such an expression is given. This study was motivated by extremal problems in probability and statistics, where one needs to evaluate such positive-part moments.
引用
收藏
页码:409 / 421
页数:13
相关论文
共 29 条
[1]  
[Anonymous], 1998, High Dimensional Probability, Progress in Probability
[2]   An extension of the Hoeffding inequality to unbounded random variables [J].
Bentkus, V. .
LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (02) :137-157
[3]   On Hoeffding's inequalities [J].
Bentkus, V .
ANNALS OF PROBABILITY, 2004, 32 (02) :1650-1673
[4]   An inequality for tail probabilities of martingales with differences bounded from one side [J].
Bentkus, V .
JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (01) :161-173
[5]  
Bentkus V, 2006, LITH MATH J, V46, P1
[6]  
Bentkus V., 2002, LITH MATH J, V42, P262
[7]   LIPSCHITZ BEHAVIOR AND INTEGRABILITY OF CHARACTERISTIC FUNCTIONS [J].
BOAS, RP .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (01) :32-&
[8]  
BOAS RP, 1968, PUBL RAMANUJAN I, V1, P71
[9]  
Brown B. M., 1972, J AUST MATH SOC, V13, P104, DOI DOI 10.1017/S1446788700010648
[10]   CHARACTERISTIC FUNCTIONS, MOMENTS, AND CENTRAL LIMIT THEOREM [J].
BROWN, BM .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (02) :658-&