The sum of the squares of degrees: Sharp asymptotics

被引:24
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
squares of degrees; de Caen's bound;
D O I
10.1016/j.disc.2007.03.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (n, m) be the maximum of the sum of the squares of degrees of a graph with n vertices and ill edges. Summarizing earlier research, we present a concise, asymptotically sharp upper bound on f (n, m), better than the bound of de Caen for almost all n and m. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3187 / 3193
页数:7
相关论文
共 11 条
[1]   A PROBLEM IN REARRANGEMENTS OF (0,1) MATRICES [J].
AHARONI, R .
DISCRETE MATHEMATICS, 1980, 30 (03) :191-201
[2]   GRAPHS WITH MAXIMAL NUMBER OF ADJACENT PAIRS OF EDGES [J].
AHLSWEDE, R ;
KATONA, GOH .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 32 (1-2) :97-120
[3]   An upper bound on the sum of squares of degrees in a hypergraph [J].
Bey, C .
DISCRETE MATHEMATICS, 2003, 269 (1-3) :259-263
[4]  
Bollobas B., 1998, GRAD TEXT M, V184, DOI 10.1007/978-1-4612-0619-4_7
[5]  
BRUALDI RA, 1987, LINEAR MULTILINEAR A, V22, P57
[6]   Sums of powers of the degrees of a graph [J].
Cioaba, Sebastian M. .
DISCRETE MATHEMATICS, 2006, 306 (16) :1959-1964
[7]   Maximizing the sum of the squares of the degrees of a graph [J].
Das, KC .
DISCRETE MATHEMATICS, 2004, 285 (1-3) :57-66
[8]   An upper bound on the sum of squares of degrees in a graph [J].
de Caen, D .
DISCRETE MATHEMATICS, 1998, 185 (1-3) :245-248
[9]   REARRANGEMENTS OF (0-1) MATRICES [J].
KATZ, M .
ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (01) :53-&
[10]  
Olpp D., 1996, Australas. J. Combin., V14, P267