Invariant eigen-operator method of deriving energy-level gap for noncommutative quantum mechanics

被引:19
作者
Jing, SC [1 ]
Fan, HY
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Univ Sci & Technol China, Dept Mat Sci & Engn, Anhua 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
noncommutative space; invariant eigen-operator; energy-level gap;
D O I
10.1142/S0217732305015975
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a new method to derive energy-level gap for Hamiltonians in the context of noncommutative quantum mechanics (NCQM). This method relies on finding invariant eigen-operators whose commutators with Hamiltonian are still the operators themselves but with some eigenvalue-like coefficients, which correspond to the energy-level gaps of the systems. Based on this method, only after some simple algebra, we derive the energy-level gaps for several important systems in NCQM, and most of these results have not been reported in literature so far.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 9 条
[1]   Magnetic fields, branes, and noncommutative geometry [J].
Bigatti, D ;
Susskind, L .
PHYSICAL REVIEW D, 2000, 62 (06)
[2]   Hydrogen atom spectrum and the Lamb shift in noncommutative QED [J].
Chaichian, M ;
Sheikh-Jabbari, MM ;
Tureanu, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2716-2719
[3]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[4]   Invariant 'eigen-operator' of the square of Schrodinger operator for deriving energy-level gap [J].
Fan, HY ;
Li, C .
PHYSICS LETTERS A, 2004, 321 (02) :75-78
[5]  
Horváthy PA, 2002, J HIGH ENERGY PHYS
[6]   Orbital magnetism of a two-dimensional noncommutative confined system [J].
Jellal, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47) :10159-10177
[7]  
JELLAL A, HEPTH0309105, P44013
[8]   Spectrum of Schodinger field in a noncommutative magnetic monopole [J].
Karabali, D ;
Nair, VP ;
Polychronakos, AP .
NUCLEAR PHYSICS B, 2002, 627 (03) :565-579
[9]   Noncommutative oscillators and the commutative limit [J].
Muthukumar, B ;
Mitra, P .
PHYSICAL REVIEW D, 2002, 66 (02)