Chiral quantum optics using a topological resonator

被引:113
作者
Barik, Sabyasachi [1 ,2 ,3 ]
Karasahin, Aziz [4 ,5 ]
Mittal, Sunil [2 ,3 ,4 ,5 ]
Waks, Edo [1 ,2 ,3 ,4 ,5 ]
Hafezi, Mohammad [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] NIST, Gaithersburg, MD 20899 USA
[4] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[5] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
NANOPHOTONIC WAVE-GUIDE; SPIN; EMITTER;
D O I
10.1103/PhysRevB.101.205303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chiral nanophotonic components, such as waveguides and resonators coupled to quantum emitters, provide a fundamentally new approach to manipulate light-matter interactions. The recent emergence of topological photonics has provided a new paradigm to realize helical/chiral nanophotonic structures that are flexible in design and, at the same time, robust against sharp bends and disorder. Here we demonstrate such a topologically protected chiral nanophotonic resonator that is strongly coupled to a solid-state quantum emitter. Specifically, we employ the valley-Hall effect in a photonic crystal to achieve topological edge states at an interface between two topologically distinct regions. Our helical resonator supports two counterpropagating edge modes with opposite polarizations. We first show chiral coupling between the topological resonator and the quantum emitter such that the emitter emits preferably into one of the counterpropagating edge modes depending upon its spin. Subsequently, we demonstrate strong coupling between the resonator and the quantum emitter using resonant Purcell enhancement in the emission intensity by a factor of 3.4. Such chiral resonators could enable designing complex nanophotonic circuits for quantum information processing and studying novel quantum many-body dynamics.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Nonreciprocal lasing in topological cavities of arbitrary geometries [J].
Bahari, Babak ;
Ndao, Abdoulaye ;
Vallini, Felipe ;
El Amili, Abdelkrim ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
SCIENCE, 2017, 358 (6363) :636-639
[2]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[3]   Unconventional quantum optics in topological waveguide QED [J].
Bello, M. ;
Platero, G. ;
Cirac, J. I. ;
Gonzalez-Tudela, A. .
SCIENCE ADVANCES, 2019, 5 (07)
[4]   Directional Dicke Subradiance with Nonclassical and Classical Light Sources [J].
Bhatti, Daniel ;
Schneider, Raimund ;
Oppel, Steffen ;
von Zanthier, Joachim .
PHYSICAL REVIEW LETTERS, 2018, 120 (11)
[5]   Quantum acousto-optic control of light-matter interactions in nanophotonic networks [J].
Calajo, G. ;
Schuetz, M. J. A. ;
Pichler, H. ;
Lukin, M. D. ;
Schneeweiss, P. ;
Volz, J. ;
Rabl, P. .
PHYSICAL REVIEW A, 2019, 99 (05)
[6]   Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation [J].
Chen, Xiao-Dong ;
Zhao, Fu-Li ;
Chen, Min ;
Dong, Jian-Wen .
PHYSICAL REVIEW B, 2017, 96 (02)
[7]  
Cheng XJ, 2016, NAT MATER, V15, P542, DOI [10.1038/nmat4573, 10.1038/NMAT4573]
[8]   Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer [J].
Coles, R. J. ;
Price, D. M. ;
Dixon, J. E. ;
Royall, B. ;
Clarke, E. ;
Kok, P. ;
Skolnick, M. S. ;
Fox, A. M. ;
Makhonin, M. N. .
NATURE COMMUNICATIONS, 2016, 7
[9]   Tailoring the polariton dispersion by optical confinement: Access to a manifold of elastic polariton pair scattering channels [J].
Dasbach, G ;
Schwab, M ;
Bayer, M ;
Krizhanovskii, DN ;
Forchel, A .
PHYSICAL REVIEW B, 2002, 66 (20) :1-4
[10]  
Dong JW, 2017, NAT MATER, V16, P298, DOI [10.1038/NMAT4807, 10.1038/nmat4807]