Low-frequency noise properties of p-type GaAs/AlGaAs heterojunction detectors

被引:0
作者
Wolde, Seyoum [1 ]
Lao, Y. F. [1 ]
Pitigala, P. K. D. D. P. [1 ]
Perera, A. G. U. [1 ]
Li, L. H. [2 ]
Khanna, S. P. [2 ,3 ]
Linfield, E. H. [2 ]
机构
[1] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[3] CSIR Natl Phys Lab, Phys Energy Harvesting, New Delhi, India
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Graded barrier; Noise; AlGaAs; GaAs; Gain; WELL INFRARED PHOTODETECTORS; MOLECULAR-BEAM EPITAXY; DEEP HOLE TRAPS; 1-F NOISE; 1/F NOISE; TRANSISTORS; GAAS; GAIN;
D O I
10.1016/j.infrared.2016.07.018
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have measured and analyzed, at different temperatures and bias voltages, the dark noise spectra of GaAs/AlGaAs heterojunction infrared photodetectors, where a highly doped GaAs emitter is sandwiched between two AlGaAs barriers. The noise and gain mechanisms associated with the carrier transport are investigated, and it is shown that a lower noise spectral density is observed for a device with a flat barrier, and thicker emitter. Despite the lower noise power spectral density of flat barrier device, comparison of the dark and photocurrent noise gain between flat and graded barrier samples confirmed that the escape probability of carriers (or detectivity) is enhanced by grading the barrier. The grading suppresses recombination owing to the higher momentum of carriers in the barrier. Optimizing the emitter thickness of the graded barrier to enhance the absorption efficiency, and increase the escape probability and lower the dark current, enhances the specific detectivity of devices. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 19 条
[1]   Low-frequency noise gain and photocurrent gain in quantum well infrared photodetectors [J].
Ershov, M ;
Liu, HC .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (11) :6580-6585
[2]   Design and optimization of GaAs/AlGaAs heterojunction infrared detectors [J].
Esaev, DG ;
Rinzan, MBM ;
Matsik, SG ;
Perera, AGU .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (08) :4588-4597
[3]   LATTICE SCATTERING CAUSES 1-F NOISE [J].
HOOGE, FN ;
VANDAMME, LKJ .
PHYSICS LETTERS A, 1978, 66 (04) :315-316
[4]   EXPERIMENTAL STUDIES ON 1-F NOISE [J].
HOOGE, FN ;
KLEINPENNING, TGM ;
VANDAMME, LKJ .
REPORTS ON PROGRESS IN PHYSICS, 1981, 44 (05) :479-532
[5]   1/F NOISE IS NO SURFACE EFFECT [J].
HOOGE, FN .
PHYSICS LETTERS A, 1969, A 29 (03) :139-&
[6]   DEEP ACCEPTOR LEVELS IN MOLECULAR-BEAM EPITAXIAL HIGH-PURITY P-TYPE GAAS [J].
KALEM, S ;
STILLMAN, GE .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1994, 33 (11) :6086-6089
[7]   Low-Frequency Noise Measurements of AlGaN/GaN Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors With HfAlO Gate Dielectric [J].
Kayis, Cemil ;
Leach, Jacob H. ;
Zhu, C. Y. ;
Wu, Mo ;
Li, X. ;
Ozgur, Umit ;
Morkoc, Hadis ;
Yang, X. ;
Misra, Veena ;
Handel, Peter H. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (09) :1041-1043
[8]   NOISE GAIN AND OPERATING TEMPERATURE OF QUANTUM-WELL INFRARED PHOTODETECTORS [J].
LIU, HC .
APPLIED PHYSICS LETTERS, 1992, 61 (22) :2703-2705
[9]   Device modeling for split-off band detectors [J].
Matsik, S. G. ;
Jayaweera, P. V. V. ;
Perera, A. G. U. ;
Choi, K. K. ;
Wijewarnasuriya, P. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
[10]  
McWhorter A., 1957, Semiconductor Surface Physics, V207, DOI DOI 10.1063/1.3060496