Linkage of modules over Cohen-Macaulay rings

被引:8
作者
Dibaei, Mohammad T. [1 ,2 ]
Gheibi, Mohsen [1 ,2 ]
Hassanzadeh, S. H. [1 ,2 ]
Sadeghi, Arash [1 ,2 ]
机构
[1] Tarbiat Moallem Univ, Fac Math Sci & Comp, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Linkage of modules; Sliding depth of extension modules; Modules with Cohen-Macaulay extension; Sequentially Cohen-Macaulay; IDEALS;
D O I
10.1016/j.jalgebra.2011.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by the theory of linkage for ideals, the concept of sliding depth of a finitely generated module over a Noetherian local ring is defined in terms of its Ext modules. As a result, in the module-theoretic linkage theory of Martsinkovsky and Strooker, one proves the Cohen-Macaulayness of a linked module if the base ring is Cohen-Macaulay (not necessarily Gorenstein). Some interplay is established between the sliding depth condition and other module-theoretic notions such as the G-dimension and the property of being sequentially Cohen-Macaulay. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 16 条
[1]  
ANDERSON F., 1992, Rings and Categories of Modules
[2]  
[Anonymous], 1993, CAMBRIDGE STUDIES AD
[3]   Ideals with stable Betti numbers [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
ADVANCES IN MATHEMATICS, 2000, 152 (01) :72-77
[4]  
Auslander M., 1969, MEM AM MATH SOC, V94
[5]  
BRODMANN MP, 1998, CAMBRIDGE STUD ADV M, V60
[6]  
CHRISTENSEN L. W., 2000, Lect. Notes in Math., V1747
[7]   IDEALS WITH SLIDING DEPTH [J].
HERZOG, J ;
VASCONCELOS, WV ;
VILLARREAL, R .
NAGOYA MATHEMATICAL JOURNAL, 1985, 99 (SEP) :159-172
[8]   Finite filtrations of modules and shellable multicomplexes [J].
Herzog, Juergen ;
Popescu, Dorin .
MANUSCRIPTA MATHEMATICA, 2006, 121 (03) :385-410
[9]   LINKAGE AND THE KOSZUL HOMOLOGY OF IDEALS [J].
HUNEKE, C .
AMERICAN JOURNAL OF MATHEMATICS, 1982, 104 (05) :1043-1062
[10]   Cohen-Macaulayness of tensor products [J].
Khatami, L ;
Yassemi, S .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (01) :205-213