An adaptive kernel sparse representation-based classification

被引:3
作者
Wang, Xuejun [1 ]
Wang, Wenjian [2 ]
Men, Changqian [1 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Minist Educ, Key Lab Computat Intelligence & Chinese Informat, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse representation; Trace norm; Sparsity; Correlation; Kernel function; ROBUST FACE RECOGNITION; SIGNAL RECOVERY; METHODOLOGY; ALGORITHMS;
D O I
10.1007/s13042-020-01110-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, scholars have attached increasing attention to sparse representation. Based on compressed sensing and machine learning, sparse representation-based classification (SRC) has been extensively in classification. However, SRC is not suitable for samples with non-linear structures which arise in many practical applications. Meanwhile, sparsity is overemphasized by SRC, but the correlation information which is of great importance in classification is overlooked. To address these shortcomings, this study puts forward an adaptive kernel sparse representation-based classification (AKSRC). First, the samples were mapped to a high-dimensional feature space from the original feature space. Second, after selecting a suitable kernel function, a sample is represented as the linear combination of training samples of same class. Further more, the trace norm is adopted in AKSRC which is different from general approaches. It's adaptive to the structure of dictionary which means that a better linear representation which has the most discriminative samples can be obtained. Therefore, AKSRC has more powerful classification ability. Finally, the advancement and effectiveness of the proposed AKSRC are verified by carrying out experiments on benchmark data sets.
引用
收藏
页码:2209 / 2219
页数:11
相关论文
共 30 条
[1]   On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems [J].
Amaldi, E ;
Kann, V .
THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) :237-260
[2]  
[Anonymous], FOUND TRENDS MACH LE
[3]  
[Anonymous], 1998, The AR Face Database Technical Report 24
[4]  
CVC
[5]  
[Anonymous], 2008, IEEE C COMP VIS PATT
[6]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[7]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[8]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[9]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[10]   For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution [J].
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (06) :797-829