Edge Tracing Using Gaussian Process Regression

被引:6
作者
Burke, Jamie [1 ,2 ]
King, Stuart [2 ]
机构
[1] Univ Edinburgh, Sch Math, Usher Inst, Edinburgh BioQuarter 9, Edinburgh EH16 4UX, Midlothian, Scotland
[2] Univ Edinburgh, Mol Genet & Populat Hlth Sci, Usher Inst, Edinburgh BioQuarter 9, Edinburgh EH16 4UX, Midlothian, Scotland
基金
英国医学研究理事会;
关键词
Image edge detection; Kernel; Image segmentation; Gaussian processes; Uncertainty; Mathematical models; Fitting; Image processing; image segmentation; SEGMENTATION;
D O I
10.1109/TIP.2021.3128329
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a novel edge tracing algorithm using Gaussian process regression. Our edge-based segmentation algorithm models an edge of interest using Gaussian process regression and iteratively searches the image for edge pixels in a recursive Bayesian scheme. This procedure combines local edge information from the image gradient and global structural information from posterior curves, sampled from the model's posterior predictive distribution, to sequentially build and refine an observation set of edge pixels. This accumulation of pixels converges the distribution to the edge of interest. Hyperparameters can be tuned by the user at initialisation and optimised given the refined observation set. This tunable approach does not require any prior training and is not restricted to any particular type of imaging domain. Due to the model's uncertainty quantification, the algorithm is robust to artefacts and occlusions which degrade the quality and continuity of edges in images. Our approach also has the ability to efficiently trace edges in image sequences by using previous-image edge traces as a priori information for consecutive images. Various applications to medical imaging and satellite imaging are used to validate the technique and comparisons are made with two commonly used edge tracing algorithms.
引用
收藏
页码:138 / 148
页数:11
相关论文
共 47 条
[1]  
[Anonymous], 1963, MACHINE PERCEPTION 3
[2]  
[Anonymous], 2012, MATH PROBLEMS ENG
[3]   Chorioretinal thinning in chronic kidney disease links to inflammation and endothelial dysfunction [J].
Balmforth, Craig ;
van Bragt, Job J. M. H. ;
Ruijs, Titia ;
Cameron, James R. ;
Kimmitt, Robert ;
Moorhouse, Rebecca ;
Czopek, Alicja ;
Hu, May Khei ;
Gallacher, Peter J. ;
Dear, James W. ;
Borooah, Shyamanga ;
MacIntyre, Iain M. ;
Pearson, Tom M. C. ;
Willox, Laura ;
Talwar, Dinesh ;
Tafflet, Muriel ;
Roubeix, Christophe ;
Sennlaub, Florian ;
Chandran, Siddharthan ;
Dhillon, Baljean ;
Webb, David J. ;
Dhaun, Neeraj .
JCI INSIGHT, 2016, 1 (20)
[4]  
Bishop C. M., 2006, MACH LEARN, V128, P430
[6]  
Chen Xinjian, 2018, IEEE Rev Biomed Eng, V11, P112, DOI 10.1109/RBME.2018.2798701
[7]  
Dijkstra E.W., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[8]  
Duda R. O., 1970, ADA457998 STANF RES
[9]   The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons [J].
Farrah, Tariq E. ;
Dhillon, Baljean ;
Keane, Pearse A. ;
Webb, David J. ;
Dhaun, Neeraj .
KIDNEY INTERNATIONAL, 2020, 98 (02) :323-342
[10]  
Freytag A, 2012, INT C PATT RECOG, P3313