Quantifying the uncertainties of chemical evolution studies II. Stellar yields

被引:325
作者
Romano, D. [1 ,2 ]
Karakas, A. I. [3 ]
Tosi, M. [2 ]
Matteucci, F. [4 ,5 ]
机构
[1] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy
[2] INAF, Osservatorio Astron Bologna, I-40127 Bologna, Italy
[3] Res Sch Astron Astrophys, Mt Stromlo Observ, Weston, ACT 2611, Australia
[4] Univ Trieste, Dipartimento Fis, I-34143 Trieste, Italy
[5] INAF, Osservatorio Astron Trieste, I-34143 Trieste, Italy
关键词
Galaxy: abundances; Galaxy: evolution; nuclear reactions; nucleosynthesis; abundances; METAL-POOR STARS; ASYMPTOTIC GIANT BRANCH; GALACTIC ABUNDANCE GRADIENT; INTERMEDIATE-MASS STARS; CORE-COLLAPSE SUPERNOVAE; 3RD DREDGE-UP; M-CIRCLE-DOT; MILKY-WAY; HALO STARS; NON-LTE;
D O I
10.1051/0004-6361/201014483
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Galactic chemical evolution models are useful tools for interpreting the large body of high-quality observational data on the chemical composition of stars and gas in galaxies that have become available in recent years. Aims. This is the second paper of a series that aims at quantifying the uncertainties in chemical evolution model predictions related to the underlying model assumptions. Specifically, it deals with the uncertainties due to the choice of the stellar yields. Methods. We adopted a widely used model for the chemical evolution of the Galaxy to test the effects of changing the stellar nucleosynthesis prescriptions on the predicted evolution of several chemical species. Up-to-date results from stellar evolutionary models were carefully taken into account. Results. We find that, except for a handful of elements whose nucleosynthesis in stars is well understood by now, large uncertainties still affect model predictions. This is especially true for the majority of the iron-peak elements, but also for much more abundant species such as carbon and nitrogen. The main causes of the mismatch we find among the outputs of different models assuming different stellar yields and among model predictions and observations are (i) the adopted location of the mass cut in models of type II supernova explosions; (ii) the adopted strength and extent of hot bottom burning in models of asymptotic giant branch stars; (iii) the neglection of the effects of rotation on the chemical composition of the stellar surfaces; (iv) the adopted rates of mass loss and of (v) nuclear reactions; and (vi) the different treatments of convection. Conclusions. Our results suggest that it is mandatory to include processes such as hot bottom burning in intermediate-mass stars and rotation in stars of all masses in accurate studies of stellar evolution and nucleosynthesis. In spite of their importance, both these processes still have to be better understood and characterized. As for massive stars, presupernova models computed with mass loss and rotation are available in the literature, but they still wait for a self-consistent coupling with the results of explosive nucleosynthesis computations.
引用
收藏
页数:27
相关论文
共 50 条
[41]   Stochastic chemical enrichment in metal-poor systems - II. Abundance ratios and scatter [J].
Karlsson, T ;
Gustafsson, B .
ASTRONOMY & ASTROPHYSICS, 2005, 436 (03) :879-894
[42]   CHEMICAL EVOLUTION IN HIERARCHICAL MODELS OF COSMIC STRUCTURE. II. THE FORMATION OF THE MILKY WAY STELLAR HALO AND THE DISTRIBUTION OF THE OLDEST STARS [J].
Tumlinson, Jason .
ASTROPHYSICAL JOURNAL, 2010, 708 (02) :1398-1418
[43]   The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance analysis II. Early chemical enrichment [J].
Mashonkina, L. ;
Jablonka, P. ;
Sitnova, T. ;
Pakhomov, Yu. ;
North, P. .
ASTRONOMY & ASTROPHYSICS, 2017, 608
[44]   The Stellar Abundances for Galactic Archaeology (SAGA) data base - II. Implications for mixing and nucleosynthesis in extremely metal-poor stars and chemical enrichment of the Galaxy [J].
Suda, Takuma ;
Yamada, Shimako ;
Katsuta, Yutaka ;
Komiya, Yutaka ;
Ishizuka, Chikako ;
Aoki, Wako ;
Fujimoto, Masayuki Y. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (02) :843-874
[45]   Chemical evolution of the Galactic bulge with different stellar populations [J].
Molero, M. ;
Matteucci, F. ;
Spitoni, E. ;
Rojas-Arriagada, A. ;
Rich, R. M. .
ASTRONOMY & ASTROPHYSICS, 2024, 687
[46]   Pn-carbon yields and the chemical evolution of the Galaxy [J].
Carigi, L .
IONIZED GASEOUS NEBULAE: A CONFERENCE TO CELEBRATE THE 60TH BIRTHDAY OF SILVIA TORRES-PEIMBERT AND MANUEL PEIMBERT, 2002, 12 :234-235
[47]   TOPoS II. On the bimodality of carbon abundance in CEMP stars Implications on the early chemical evolution of galaxies [J].
Bonifacio, P. ;
Caffau, E. ;
Spite, M. ;
Limongi, M. ;
Chieffi, A. ;
Klessen, R. S. ;
Francois, P. ;
Molaro, P. ;
Ludwig, H. -G. ;
Zaggia, S. ;
Spite, F. ;
Plez, B. ;
Cayrel, R. ;
Christlieb, N. ;
Clark, P. C. ;
Glover, S. C. O. ;
Hammer, F. ;
Koch, A. ;
Monaco, L. ;
Sbordone, L. ;
Steffen, M. .
ASTRONOMY & ASTROPHYSICS, 2015, 579
[48]   Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two Distinct Populations [J].
Fernandez-Alvar, Emma ;
Carigi, Leticia ;
Schuster, William J. ;
Hayes, Christian R. ;
Avila-Vergara, Nancy ;
Majewski, Steve R. ;
Allende Prieto, Carlos ;
Beers, Timothy C. ;
Sanchez, Sebastian F. ;
Zamora, Olga ;
Anibal Garcia-Hernandez, Domingo ;
Tang, Baitian ;
Fernandez-Trincado, Jose G. ;
Tissera, Patricia ;
Geisler, Douglas ;
Villanova, Sandro .
ASTROPHYSICAL JOURNAL, 2018, 852 (01)
[49]   Distance determination for RAVE stars using stellar models II. Most likely values assuming a standard stellar evolution scenario [J].
Zwitter, T. ;
Matijevic, G. ;
Breddels, M. A. ;
Smith, M. C. ;
Helmi, A. ;
Munari, U. ;
Bienayme, O. ;
Binney, J. ;
Bland-Hawthorn, J. ;
Boeche, C. ;
Brown, A. G. A. ;
Campbell, R. ;
Freeman, K. C. ;
Fulbright, J. ;
Gibson, B. ;
Gilmore, G. ;
Grebel, E. K. ;
Navarro, J. F. ;
Parker, Q. A. ;
Seabroke, G. M. ;
Siebert, A. ;
Siviero, A. ;
Steinmetz, M. ;
Watson, F. G. ;
Williams, M. ;
Wyse, R. F. G. .
ASTRONOMY & ASTROPHYSICS, 2010, 522
[50]   Chemical evolution in the early phases of massive star formation II. Deuteration [J].
Gerner, T. ;
Shirley, Y. L. ;
Beuther, H. ;
Semenov, D. ;
Linz, H. ;
Albertsson, T. ;
Henning, Th. .
ASTRONOMY & ASTROPHYSICS, 2015, 579