An efficient approach for classification of gene expression microarray data

被引:1
|
作者
Sreepada, Rama Syamala [1 ]
Vipsita, Swati [1 ]
Mohapatra, Puspanjali [1 ]
机构
[1] IIIT Bhubaneswar, Dept Comp Sci Engn, Bhubaneswar 751003, Orissa, India
来源
2014 FOURTH INTERNATIONAL CONFERENCE OF EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT) | 2014年
关键词
Microarray; Feature extraction; feature selection; Probabilistic Neural Network; Genetic Algorithms; ALGORITHM;
D O I
10.1109/EAIT.2014.46
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microarrays help in storing gene expression data from a cell. Each microarray describes features of each cell. The rows in microarray represent the samples and the columns represent the gene expression level of the cell. Microarray data is of high dimension due to which classification using conventional methods becomes tedious and inefficient. Therefore, reducing the dimension of long feature vector and extracting relevant features out of it becomes a very challenging task. This can be achieved using various techniques of feature extraction and/or feature selection. Design of an efficient classification model is another crucial task for any classification problem. In this paper, emphasis is given for significant feature extraction as well as efficient design of classifier. The task of microarray classification is done in two phases. In the first phase, a hybrid approach of Genetic Algorithm (GA) and Principal Component Analysis (PCA) is used for extracting relevant features. In the second phase, Probabilistic Neural Network (PNN) is used as the classifier and GA is implemented to optimize the topology of the PNN. The datasets used in the experiment are Colon Tumor, Diffuse Large B Cell Lymphoma (DLBCL) and Leukemia (ALL and AML). The proposed technique gave efficient results for the datasets used.
引用
收藏
页码:344 / 348
页数:5
相关论文
共 50 条
  • [41] Classification of Microarray Gene Expression Data Using an Infiltration Tactics Optimization (ITO) Algorithm
    Zahoor, Javed
    Zafar, Kashif
    GENES, 2020, 11 (07) : 1 - 28
  • [42] A Discriminative Feature Extraction Approach for Tumor Classification Using Gene Expression Data
    Mei, Qinglin
    Zhang, Huaxiang
    Liang, Cheng
    CURRENT BIOINFORMATICS, 2016, 11 (05) : 561 - 570
  • [43] PCA and DWT Based Gene Selection Technique for Classification of Microarray Data
    Nirmalakumari, K.
    Rajaguru, Harikumar
    Rajkumar, P.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), 2018, : 850 - 854
  • [44] Gene Selection for Cancer Classification from Microarray Data Using Data Overlap Measure
    Sarbazi-Azad, Saeed
    Abadeh, Mohammad Saniee
    2018 25TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2018 3RD INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2018, : 257 - 262
  • [45] A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data
    Wang, Hong
    Jing, Xingjian
    Niu, Ben
    KNOWLEDGE-BASED SYSTEMS, 2017, 126 : 8 - 19
  • [46] New Gene Selection Method Using Gene Expression Programing Approach on Microarray Data Sets
    Alanni, Russul
    Hou, Jingyu
    Azzawi, Hasseeb
    Xiang, Yong
    COMPUTER AND INFORMATION SCIENCE (ICIS 2018), 2019, 791 : 17 - 31
  • [47] Selecting Few Genes for Microarray Gene Expression Classification
    Alonso-Gonzalez, Carlos J.
    Isaac Moro, Q.
    Prieto, Oscar J.
    Aranzazu Simon, M.
    CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2010, 5988 : 111 - 120
  • [48] Efficient selection of discriminative genes from microarray gene expression data for cancer diagnosis
    Huang, D
    Chow, TWS
    Ma, EWM
    Li, JY
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (09) : 1909 - 1918
  • [49] A sequential feature extraction approach for naive bayes classification of microarray data
    Fan, Liwei
    Poh, Kim-Leng
    Zhou, Peng
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (06) : 9919 - 9923
  • [50] A Novel Information Theoretic Approach to Gene Selection for Cancer Classification Using Microarray Data
    Naseem, Imran
    Togneri, Roberto
    Bennamoun, Mohammed
    CURRENT BIOINFORMATICS, 2015, 10 (04) : 431 - 440