Trapped Exciton-Polariton Condensate by Spatial Confinement in a Perovskite Microcavity

被引:38
作者
Zhang, Shuai [1 ,2 ]
Chen, Jie [1 ,2 ,3 ]
Shi, Jia [1 ,2 ]
Fu, Lei [3 ]
Du, Wenna [1 ,2 ]
Sui, Xinyu [1 ,2 ]
Mi, Yang [1 ]
Jia, Zhili [1 ]
Liu, Fengjing [1 ,2 ]
Shi, Jianwei [1 ]
Wu, Xianxin [1 ,2 ]
Tang, Ning [3 ]
Zhang, Qing [3 ]
Liu, Xinfeng [1 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Peking Univ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
CsPbBr3; perovskite; polariton condensate; optical trap; detuning; nonlinearity; BOSE-EINSTEIN CONDENSATION;
D O I
10.1021/acsphotonics.9b01240
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lead halide perovskites exhibit good performance in room-temperature exciton polariton lasers and efficient flow of polariton condensates. Shaping and directing polariton condensates by confining the potential is essential for polariton-based optoelectronic devices, which have seldom been explored based on perovskite materials. Here, we investigate the trapping of polaritons in micron-sized CsPbBr3 flakes embedded in a microcavity by varying the negative detuning energy (from -36 to -172 meV) at room temperature. The confinement by the crystal edge results in quantized polariton states both below and above the condensed threshold. As the cavity is more negatively detuned (Delta <= -118 meV), the condensed polaritons undergo a transition from the ground state to metastable states with a finite group velocity (similar to 50 mu m/ps at Delta = -118 meV). The metastable polariton condensates can be optically and stably driven between different polariton states by simply changing the pump fluence. The manipulations of the polariton states reveal the effective control of polariton relaxation in quantized polariton states by the underlying exciton-polariton and polariton-polariton scattering. Our findings pave the way for novel polaritonic light sources and integrated polariton devices through the trap engineering of perovskite microcavities.
引用
收藏
页码:327 / 337
页数:21
相关论文
共 70 条
[1]   Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons [J].
Abbarchi, M. ;
Amo, A. ;
Sala, V. G. ;
Solnyshkov, D. D. ;
Flayac, H. ;
Ferrier, L. ;
Sagnes, I. ;
Galopin, E. ;
Lemaitre, A. ;
Malpuech, G. ;
Bloch, J. .
NATURE PHYSICS, 2013, 9 (05) :275-279
[2]   Exciton-polaritons in lattices: A non-linear photonic simulator [J].
Amo, Alberto ;
Bloch, Jacqueline .
COMPTES RENDUS PHYSIQUE, 2016, 17 (08) :934-945
[3]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[4]  
[Anonymous], PHYS QUANTUM FLUIDS
[5]  
[Anonymous], 2015, Organic and Hybrid Photonic Crystals
[7]   Role of the stress trap in the polariton quasiequilibrium condensation in GaAs microcavities [J].
Balili, R. ;
Nelsen, B. ;
Snoke, D. W. ;
Pfeiffer, L. ;
West, K. .
PHYSICAL REVIEW B, 2009, 79 (07)
[8]   All-optical polariton transistor [J].
Ballarini, D. ;
De Giorgi, M. ;
Cancellieri, E. ;
Houdre, R. ;
Giacobino, E. ;
Cingolani, R. ;
Bramati, A. ;
Gigli, G. ;
Sanvitto, D. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity [J].
Bao, Wei ;
Liu, Xiaoze ;
Xue, Fei ;
Zheng, Fan ;
Tao, Renjie ;
Wang, Siqi ;
Xia, Yang ;
Zhao, Mervin ;
Kim, Jeongmin ;
Yang, Sui ;
Li, Quanwei ;
Wang, Ying ;
Wang, Yuan ;
Wang, Lin-Wang ;
MacDonald, Allan H. ;
Zhang, Xiang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (41) :20274-20279
[10]   Room-Temperature Cavity Polaritons with 3D Hybrid Perovskite: Toward Large-Surface Polaritonic Devices [J].
Bouteyre, Paul ;
Hai Son Nguyen ;
Lauret, Jean-Sebastien ;
Trippe-Allard, Gaelle ;
Delport, Geraud ;
Ledee, Ferdinand ;
Diab, Hiba ;
Belarouci, Ali ;
Seassal, Christian ;
Garrot, Damien ;
Bretenaker, Fabien ;
Deleporte, Emmanuelle .
ACS PHOTONICS, 2019, 6 (07) :1804-1811