High-performance strain-compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum-well diode lasers

被引:80
作者
Tansu, N [1 ]
Mawst, LJ [1 ]
机构
[1] Univ Wisconsin, Dept Elect Comp Engn, Madison, WI 53706 USA
关键词
diode lasers; epitaxial growth; InGaAs-GaAs quantum well; long-wavelength lasers; quantum-well lasers; semiconductor growth; semiconductor lasers; strain;
D O I
10.1109/68.914313
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter reports studies on highly strained and strain-compensated InGaAs quantum-well (QW) active diode lasers on GaAs substrates, fabricated by low-temperature (550 degreesC) metal-organic chemical vapor deposition (MOCVD) growth. Strain compensation of the (compressively strained) InCaAs QW is investigated by using either InGaP (tensile-strained) cladding layer or GaAsP (tensile-strained) barrier layers, High-performance lambda = 1.165 mum laser emission is achieved from InGaAs-GaAsP strain-compensated QW laser structures, with threshold current densities of 65 A/cm(2) for 1500-mum-cavity devices and transparency current densities of 50 A/cm(2). The use of GaAsP-barrier layers are also shown to significantly improve the internal quantum efficiency of the highly strained InCaAs-active laser structure. As a result, external differential quantum efficiencies of 56% are achieved for 500-mum-cavity length diode lasers.
引用
收藏
页码:179 / 181
页数:3
相关论文
共 14 条
[1]   14.3 W quasicontinuous wave front-facet power from broad-waveguide Al-free 970 nm diode lasers [J].
AlMuhanna, A ;
Mawst, LJ ;
Botez, D ;
Garbuzov, DZ ;
Martinelli, RU ;
Connolly, JC .
APPLIED PHYSICS LETTERS, 1997, 71 (09) :1142-1144
[2]   Temperature-insensitive operation of real index guided 1.06 μm InGaAs GaAsP strain-compensated single-quantum-well laser diodes [J].
Asano, H ;
Wada, M ;
Fukunaga, T ;
Hayakawa, T .
APPLIED PHYSICS LETTERS, 1999, 74 (21) :3090-3092
[3]  
CHEN ZB, 1999, P APCC OECC 99 BEIJ, V2, P1311
[4]   1.2-μm GaAsP/InGaAs strain compensated single-quantum-well diode laser on GaAs using metal-organic chemical vapor deposition [J].
Choi, WJ ;
Dapkus, D ;
Jewell, JJ .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (12) :1572-1574
[5]   1.3 μm room-temperature GaAs-based quantum-dot laser [J].
Huffaker, DL ;
Park, G ;
Zou, Z ;
Shchekin, OB ;
Deppe, DG .
APPLIED PHYSICS LETTERS, 1998, 73 (18) :2564-2566
[6]   1.2μm highly strained GaInAs/GaAs quantum well lasers for singlemode fibre datalink [J].
Koyama, F ;
Schlenker, D ;
Miyamoto, T ;
Chen, Z ;
Matsutani, A ;
Sakaguchi, T ;
Iga, K .
ELECTRONICS LETTERS, 1999, 35 (13) :1079-1081
[7]   Effect of GaAsyP1-y(0≤y<1) interlayers on the structural, optical, and electrical characteristics of GaAs/InGaP heterojunction [J].
Kwon, YH ;
Jeong, WG ;
Cho, YH ;
Choe, BD .
APPLIED PHYSICS LETTERS, 2000, 76 (17) :2379-2381
[8]   HIGH-POWER HIGHLY-RELIABLE OPERATION OF 0.98-MU-M INGAAS-INGAP STRAIN-COMPENSATED SINGLE-QUANTUM-WELL LASERS WITH TENSILE-STRAINED INGAASP BARRIERS [J].
SAGAWA, M ;
TOYONAKA, T ;
HIRAMOTO, K ;
SHINODA, K ;
UOMI, K .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1995, 1 (02) :189-195
[9]   Room-temperature continuous-wave operation of 1.24-μm GaInNAs lasers grown by metal-organic chemical vapor deposition [J].
Sato, S ;
Satoh, S .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (03) :707-710
[10]   1.17-μm highly strained GaInAs-GaAs quantum-well laser [J].
Schlenker, D ;
Miyamoto, T ;
Chen, Z ;
Koyama, F ;
Iga, K .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (08) :946-948