An event-triggered real-time motion planning strategy for autonomous vehicles

被引:6
作者
Hu, Jie [1 ,2 ,3 ]
Chen, Ruinan [1 ,2 ,3 ]
Xu, Wencai [1 ,2 ,3 ]
Lu, Ruoyu [4 ]
机构
[1] Wuhan Univ Technol, Hubei Res Ctr New Energy & Intelligent Connected, Wuhan, Peoples R China
[2] Wuhan Univ Technol, Hubei Collaborat Innovat Ctr Automot Components T, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan, Peoples R China
[4] Dongfeng Usharing Technol Co, Wuhan, Peoples R China
关键词
Autonomous driving; behavioral planning; path planning; event-triggered; real-time planning strategy;
D O I
10.1177/09544062221098548
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Motion planning is an essential part of autonomous vehicles. The planning process should respond to environmental changes in real time to ensure safety. This paper proposes an event-triggered real-time motion planning strategy to achieve a more real-time planning effect and a scenario-based planning process. The path planning process is discretized into several parts and integrated into the behavioral planning process. A hierarchical finite state machine (HFSM) based integrated motion planning process is proposed to trigger the discrete path planning parts according to environmental events. Thus, the output reference path can be obtained. Experiment and simulation results show the efficiency of our strategy.
引用
收藏
页码:10332 / 10348
页数:17
相关论文
共 25 条
[1]   Clothoid: An Integrated Hierarchical Framework for Autonomous Driving in a Dynamic Urban Environment [J].
Arshad, Saba ;
Sualeh, Muhammad ;
Kim, Dohyeong ;
Dinh Van Nam ;
Kim, Gon-Woo .
SENSORS, 2020, 20 (18) :1-28
[2]   Hierarchical control strategy towards safe driving of autonomous vehicles [J].
Chen, Keji ;
Yang, Bo ;
Pei, Xiaofei ;
Guo, Xuexun .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (04) :2197-2212
[3]   Real-time path planning of autonomous vehicles for unstructured road navigation [J].
Chu, K. ;
Kim, J. ;
Jo, K. ;
Sunwoo, M. .
INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2015, 16 (04) :653-668
[4]  
Eskandarian A, 2012, HANDBOOK OF INTELLIGENT VEHICLES, VOLS 1 AND 2, P1, DOI 10.1007/978-0-85729-085-4
[5]  
Fan H., 2018, arXiv180708048
[6]   Driver-like decision-making method for vehicle longitudinal autonomous driving based on deep reinforcement learning [J].
Gao, Zhenhai ;
Yan, Xiangtong ;
Gao, Fei ;
He, Lei .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2022, 236 (13) :3060-3070
[7]   A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions [J].
Gul, Faiza ;
Mir, Imran ;
Abualigah, Laith ;
Sumari, Putra ;
Forestiero, Agostino .
ELECTRONICS, 2021, 10 (18)
[8]  
Huegle M, 2019, IEEE INT C INT ROBOT, P7566, DOI [10.1109/IROS40897.2019.8968560, 10.1109/iros40897.2019.8968560]
[10]   Kinodynamic Motion Planning With Continuous-Time Q-Learning: An Online, Model-Free, and Safe Navigation Framework [J].
Kontoudis, George P. ;
Vamvoudakis, Kyriakos G. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (12) :3803-3817