Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature

被引:34
作者
Caheri Salas-Navarrete, Prisciluis [1 ]
de Oca Miranda, Arturo Ivan Montes [1 ]
Martinez, Alfredo [2 ]
Caspeta, Luis [2 ]
机构
[1] Univ Autonoma Estado Morelos, Ctr Invest Biotecnol, Av Univ 1001, Cuernavaca 62209, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Ingn Celular & Biocatalisis, Av Univ 2001, Cuernavaca 62210, Morelos, Mexico
关键词
Saccharomyces cerevisiae; Thermo-acidic tolerance; Acetate tolerance; Adaptive laboratory evolution; Reverse engineering; FUEL ETHANOL; YEAST STRAINS; BIOETHANOL PRODUCTION; STRESS TOLERANCE; FERMENTATION; CONTAMINATION; PERFORMANCE; PHYSIOLOGY; REGULATOR; STABILITY;
D O I
10.1007/s00253-021-11730-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Saccharomyces cerevisiae scarcely grows on minimal media with acetic acid, acidic pH, and high temperatures. In this study, the adaptive laboratory evolution (ALE), whole-genome analysis, and reverse engineering approaches were used to generate strains tolerant to these conditions. The thermotolerant strain TTY23 and its parental S288C were evolved through 1 year, in increasing concentrations of acetic acid up to 12 g/L, keeping the pH <= 4. Of the 18 isolated strains, 9 from each ancestor, we selected the thermo-acid tolerant TAT12, derived from TTY23, and the acid tolerant AT22, derived from S288C. Both grew in minimal media with 12 g/L of acetic acid, pH 4, and 30 degrees C, and produced ethanol up to 29.25 +/- 6 mmol/g(DCW)/h-neither of the ancestors thrived in these conditions. Furthermore, only the TAT12 grew on 2 g/L of acetic acid, pH 3, and 37 degrees C, and accumulated 16.5 +/- 0.5 mmol/g(DCW)/h of ethanol. Whole-genome sequencing and transcriptomic analysis of this strain showed changes in the genetic sequence and transcription of key genes involved in the RAS-cAMP-PKA signaling pathway (RAS2, GPA2, and IRA2), the heat shock transcription factor (HSF1), and the positive regulator of replication initiation (SUM1), among others. By reverse engineering, the relevance of the combined mutations in the genes RAS2, HSF1, and SUM1 to the tolerance for acetic acid, low pH, and high temperature was confirmed. Alone, the RAS2 mutation yielded acid tolerance and HSF1 nutation thermotolerance. Increasing the thermo-acidic niche and acetic acid tolerance of S. cerevisiae can contribute to improve economic ethanol production.
引用
收藏
页码:383 / 399
页数:17
相关论文
共 59 条
[1]  
[Anonymous], 2008, BIOLOGIJA, DOI DOI 10.2478/V10054-008-0031-7
[2]   Microbial contamination of fuel ethanol fermentations [J].
Beckner, M. ;
Ivey, M. L. ;
Phister, T. G. .
LETTERS IN APPLIED MICROBIOLOGY, 2011, 53 (04) :387-394
[3]   Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol [J].
Benjaphokee, Suthee ;
Hasegawa, Daisuke ;
Yokota, Daiki ;
Asvarak, Thipa ;
Auesukaree, Choowong ;
Sugiyama, Minetaka ;
Kaneko, Yoshinobu ;
Boonchird, Chuenchit ;
Harashima, Satoshi .
NEW BIOTECHNOLOGY, 2012, 29 (03) :379-386
[4]   Engineering high-gravity fermentations for ethanol production at elevated temperature with Saccharomyces cerevisiae [J].
Caspeta, Luis ;
Coronel, Jesus ;
de Oca, Arturo Montes ;
Abarca, Eduardo ;
Gonzalez, Lidia ;
Martinez, Alfredo .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (10) :2587-2597
[5]   Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30°C [J].
Caspeta, Luis ;
Chen, Yun ;
Nielsen, Jens .
SCIENTIFIC REPORTS, 2016, 6
[6]   Altered sterol composition renders yeast thermotolerant [J].
Caspeta, Luis ;
Chen, Yun ;
Ghiaci, Payam ;
Feizi, Amir ;
Buskov, Steen ;
Hallstrom, Bjorn M. ;
Petranovic, Dina ;
Nielsen, Jens .
SCIENCE, 2014, 346 (6205) :75-78
[7]   INDUCTION OF INCREASED THERMOTOLERANCE IN SACCHAROMYCES-CEREVISIAE MAY BE TRIGGERED BY A MECHANISM INVOLVING INTRACELLULAR PH [J].
COOTE, PJ ;
COLE, MB ;
JONES, MV .
JOURNAL OF GENERAL MICROBIOLOGY, 1991, 137 :1701-1708
[8]   Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry [J].
Della-Bianca, B. E. ;
Gombert, A. K. .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2013, 104 (06) :1083-1095
[9]   Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications [J].
Della-Bianca, Bianca E. ;
de Hulster, Erik ;
Pronk, Jack T. ;
van Maris, Antonius J. A. ;
Gombert, Andreas K. .
FEMS YEAST RESEARCH, 2014, 14 (08) :1196-1205
[10]   What do we know about the yeast strains from the Brazilian fuel ethanol industry? [J].
Della-Bianca, Bianca Eli ;
Basso, Thiago Olitta ;
Stambuk, Boris Ugarte ;
Basso, Luiz Carlos ;
Gombert, Andreas Karoly .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (03) :979-991