Second-Order Finite Difference/Spectral Element Formulation for Solving the Fractional Advection-Diffusion Equation

被引:15
作者
Abbaszadeh, Mostafa [1 ]
Amjadian, Hanieh [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
关键词
Spectral method; Finite difference method; Fractional advection-diffusion equation; Galerkin weak form; Unconditional stability; 65L60; 65L20; 65M70; PARTIAL-DIFFERENTIAL-EQUATION; TIME SPECTRAL METHOD; NUMERICAL ALGORITHM; COLLOCATION METHOD; ERROR ESTIMATE; WAVE EQUATION; SPACE; APPROXIMATIONS; SCHEME; DERIVATIVES;
D O I
10.1007/s42967-020-00060-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this paper is to analyze the numerical method based upon the spectral element technique for the numerical solution of the fractional advection-diffusion equation. The time variable has been discretized by a second-order finite difference procedure. The stability and the convergence of the semi-discrete formula have been proven. Then, the spatial variable of the main PDEs is approximated by the spectral element method. The convergence order of the fully discrete scheme is studied. The basis functions of the spectral element method are based upon a class of Legendre polynomials. The numerical experiments confirm the theoretical results.
引用
收藏
页码:653 / 669
页数:17
相关论文
共 50 条
  • [41] Semi-implicit Second Order Accurate Finite Volume Method for Advection-Diffusion Level Set Equation
    Balazovjech, Martin
    Frolkovic, Peter
    Frolkovic, Richard
    Mikula, Karol
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - ELLIPTIC, PARABOLIC AND HYPERBOLIC PROBLEMS, FVCA 7, 2014, 78 : 479 - 487
  • [42] A novel finite volume method for the Riesz space distributed-order advection-diffusion equation
    Li, J.
    Liu, F.
    Feng, L.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2017, 46 : 536 - 553
  • [43] A second order finite difference-spectral method for space fractional diffusion equations
    JianFei Huang
    NingMing Nie
    YiFa Tang
    Science China Mathematics, 2014, 57 : 1303 - 1317
  • [44] A second order finite difference-spectral method for space fractional diffusion equations
    HUANG JianFei
    NIE NingMing
    TANG YiFa
    Science China(Mathematics), 2014, 57 (06) : 1303 - 1317
  • [45] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    Parvizi, M.
    Eslahchi, M. R.
    Dehghan, Mehdi
    NUMERICAL ALGORITHMS, 2015, 68 (03) : 601 - 629
  • [46] Performance of some finite difference methods for a 3D advection-diffusion equation
    Appadu, A. R.
    Djoko, J. K.
    Gidey, H. H.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1179 - 1210
  • [47] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    M. Parvizi
    M. R. Eslahchi
    Mehdi Dehghan
    Numerical Algorithms, 2015, 68 : 601 - 629
  • [48] A FAST SECOND-ORDER FINITE DIFFERENCE METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Basu, Treena S.
    Wang, Hong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (03) : 658 - 666
  • [49] An RBF based meshless method for the distributed order time fractional advection-diffusion equation
    Liu, Quanzhen
    Mu, Shanjun
    Liu, Qingxia
    Liu, Baoquan
    Bi, Xiaolei
    Zhuang, Pinghui
    Li, Bochen
    Gao, Jian
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 96 : 55 - 63
  • [50] Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection-diffusion equations
    Mirzaee, Farshid
    Samadyar, Nasrin
    ENGINEERING WITH COMPUTERS, 2020, 36 (04) : 1673 - 1686