Nonparametric regression estimation for functional stationary ergodic data with missing at random

被引:51
|
作者
Ling, Nengxiang [1 ]
Liang, Longlong [1 ]
Vieu, Philippe [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[2] Univ Toulouse 3, Inst Math, F-31062 Toulouse, France
关键词
Missing at random; Functional data analysis; Convergence in probability; Asymptotic normality; Ergodic processes; Regression operator; MODELS;
D O I
10.1016/j.jspi.2015.02.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the asymptotic properties of the estimator for the regression function operator whenever the functional stationary ergodic data with missing at random (MAR) are considered. Concretely, we construct the kernel type estimator of the regression operator for functional stationary ergodic data with the responses MAR, and some asymptotic properties such as the convergence rate in probability as well as the asymptotic normality of the estimator are obtained under some mild conditions respectively. As an application, the asymptotic (1-zeta) confidence interval of the regression operator is also presented for 0 < zeta< 1. Finally, a simulation study is carried out to compare the finite sample performance based on mean square error between the classical functional regression in complete case and the functional regression with MAR. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 50 条
  • [1] Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties
    Laib, Naamane
    Louani, Djamal
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) : 2266 - 2281
  • [2] Nonparametric quantile regression estimation for functional data with responses missing at random
    Xu, Dengke
    Du, Jiang
    METRIKA, 2020, 83 (08) : 977 - 990
  • [3] Nonparametric quantile regression estimation for functional data with responses missing at random
    Dengke Xu
    Jiang Du
    Metrika, 2020, 83 : 977 - 990
  • [4] Conditional mode estimation for functional stationary ergodic data with responses missing at random
    Ling, Nengxiang
    Liu, Yang
    Vieu, Philippe
    STATISTICS, 2016, 50 (05) : 991 - 1013
  • [5] Nonparametric M-estimation for Functional Stationary Ergodic Data
    Xian-zhu XIONG
    Zheng-yan LIN
    Acta Mathematicae Applicatae Sinica, 2019, 35 (03) : 491 - 512
  • [6] Nonparametric M-estimation for Functional Stationary Ergodic Data
    Xian-zhu Xiong
    Zheng-yan Lin
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 491 - 512
  • [7] Nonparametric M-estimation for Functional Stationary Ergodic Data
    Xiong, Xian-zhu
    Lin, Zheng-yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (03): : 491 - 512
  • [8] Asymptotic Normality of Nonparametric Kernel Regression Estimation for Missing at Random Functional Spatial Data
    Alshahrani, Fatimah
    Almanjahie, Ibrahim M.
    Benchikh, Tawfik
    Fetitah, Omar
    Attouch, Mohammed Kadi
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [9] Empirical Likelihood Inference for Nonparametric Regression Functions with Functional Stationary Ergodic Data
    Xiong, Xian-Zhu
    Lin, Zheng-Yan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (19) : 3421 - 3431
  • [10] NONPARAMETRIC REGRESSION ESTIMATION WITH MISSING DATA
    CHU, CK
    CHENG, PE
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 48 (01) : 85 - 99