The quantum harmonic oscillator on the sphere and the hyperbolic plane:: κ-dependent formalism, polar coordinates, and hypergeometric functions

被引:27
作者
Carinena, Jose F. [1 ]
Ranada, Manuel F.
Santander, Mariano
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
关键词
D O I
10.1063/1.2795214
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A nonlinear model representing the quantum harmonic oscillator on the sphere and the hyperbolic plane is solved in polar coordinates (r,phi) by making use of a curvature-dependent formalism. The curvature kappa is considered as a parameter and then the radial Schrodinger equation becomes a kappa-dependent Gauss hypergeometric equation. The energy spectrum and the wave functions are exactly obtained in both the sphere S-2 (kappa>0) and the hyperbolic plane H-2 (kappa < 0). A comparative study between the spherical and the hyperbolic quantum results is presented. (C) 2007 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 58 条
[11]   A nonlinear deformation of the isotonic oscillator and the Smorodinski-Winternitz system:: Integrability and superintegrability [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
REGULAR & CHAOTIC DYNAMICS, 2005, 10 (04) :423-436
[12]   One-dimensional model of a quantum nonlinear harmonic oscillator [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :285-293
[13]   A non-linear oscillator with quasi-harmonic behaviour:: two- and n-dimensional oscillators [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M ;
Senthilvelan, M .
NONLINEARITY, 2004, 17 (05) :1941-1963
[14]  
CARINENA JF, IN PRESS PHYS AT NUC
[15]   The quantum harmonic oscillator on the sphere and the hyperbolic plane [J].
Carinena, Jose F. ;
Ranada, Manuel F. ;
Santander, Mariano .
ANNALS OF PHYSICS, 2007, 322 (10) :2249-2278
[16]   A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour [J].
Carinena, Jose F. ;
Ranada, Manuel F. ;
Santander, Mariano .
ANNALS OF PHYSICS, 2007, 322 (02) :434-459
[17]  
Dombrowski P, 1991, DEMONSTRATIO MATH, V24, P375
[18]  
Fassari S., 1996, Reports on Mathematical Physics, V37, P283, DOI 10.1016/0034-4877(96)89768-0
[19]  
Fassari S., 1997, Reports on Mathematical Physics, V39, P77, DOI 10.1016/S0034-4877(97)81472-3
[20]   CONVERGENT POWER-SERIES SOLUTIONS TO THE SCHRODINGER-EQUATION WITH THE POTENTIAL X2+LAMBDA-X2/(1+GX2) [J].
FERNANDEZ, FM .
PHYSICS LETTERS A, 1991, 160 (02) :116-118