Finding the detour-critical edge of a shortest path between two nodes

被引:35
作者
Nardelli, E
Proietti, G
Widmayer, P
机构
[1] CNR, Ist Anal Sistemi & Informat, I-00185 Roma, Italy
[2] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67010 Laquila, Italy
[3] ETH Zentrum, Inst Theoret Informat, CH-8092 Zurich, Switzerland
关键词
shortest path; fault tolerance; transient edge failures; longest detour; most critical edge;
D O I
10.1016/S0020-0190(98)00077-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let P-G(r, s) denote a shortest path between two nodes r and s in an undirected graph G with nonnegative edge weights. A detour at a node u epsilon P-G(r, s) = (r,..., u, v,...,s) is defined as a shortest path PG-e(u,s) from u to s which does not make use of (u, v). In this paper we focus on the problem of finding an edge e = (u, v) epsilon P-G(r, s) whose removal produces a detour at node u such that the length of PG-e(u, s) minus the length of P-G(u, s) is maximum. We call such an edge a detour-critical edge. We will show that this problem can be solved in O(m + n log n) time, where n and in denote the number of nodes and edges in the graph, respectively. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:51 / 54
页数:4
相关论文
共 3 条
[1]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[2]   THE KAPPA MOST VITAL ARCS IN THE SHORTEST-PATH PROBLEM [J].
MALIK, K ;
MITTAL, AK ;
GUPTA, SK .
OPERATIONS RESEARCH LETTERS, 1989, 8 (04) :223-227
[3]  
Tarjan R. E., 1974, Information Processing Letters, V2, P160, DOI 10.1016/0020-0190(74)90003-9