1. The Na+,K+-ATPase or Na+,K+-pump, mediating the active transport of Na+ and K+, which was first identified 40 years ago, is a central target for acute and long-term regulation, as well as for therapeutic intervention. Acute stimulation of the Na+,K+-pump in skeletal muscle by insulin, catecholamines, beta(2)-agonists or theophylline increases the intracellular uptake of K+ and accounts for the hypokalaemia elicited by these agents. Conversely, digitalis intoxication elicits hyperkalaemia via acute inhibition of the Na+,K+-pump. 2. Simple and accurate methods have been developed for the quantification of the total concentration of Naf,Kf-pumps in small (0.5-5 mg) fresh or frozen biopsies of human skeletal muscle, myocardium or other tissues. This has allowed the identification of several long-term regulatory changes in the concentration of this transport system in human tissues. In skeletal muscle, upregulation is induced by training, thyroid hormones or glucocorticoids. Down-regulation is seen in hypothyroidism, cardiac insufficiency, myotonic dystrophy, McArdle disease, K+ deficiency and after muscle inactivity. 3. Since the skeletal muscles contain one of the major pools of Na+,K+-pumps, these changes are important for the ability to counterregulate the hyperkalaemia elicited by exercise or the ingestion of K+. Moreover, down regulation or inhibition of the Na+,K+-pumps in skeletal muscle interferes with contractile performance. Since digitalis glycosides bind to the Na+, K+-pump, the muscles constitute a large distribution volume for these agents and are therefore an important determinant for their plasma level. 4. In cardiac insufficiency, the decrease in the concentration of Na+,K+-pumps in the myocardium is over a wide range correlated to the concomitant reduction in ejection fraction. The regulatory and pathophysiological changes in the activity and concentration of Na+,K+-pumps are important for the contractile function of skeletal muscle and heart as well as for K+ homoeostasis and the response to digitalization.