Computability of solutions of the Korteweg-de Vries equation

被引:0
|
作者
Gay, W
Zhang, BY
Zhong, N
机构
[1] Univ Cincinnati, Clermont Coll, Batavia, OH 45103 USA
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
initial value problem; KdV equation; Sobolev space;
D O I
10.1002/1521-3870(200101)47:1<93::AID-MALQ93>3.0.CO;2-C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study computability of the solutions of the Korteweg-de Vries (KdV) equation u(t) + uu(x) + u(xxx) = 0. This is one of the open problems posted by Pour-El and Richards [25]. Based on Bourgain's new approach to the initial value problem for the KdV equation in the periodic case, we show that the periodic solution u(x, t) of the KdV equation is computable if the initial data is computable.
引用
收藏
页码:93 / 110
页数:18
相关论文
共 50 条
  • [41] Inverse source problem for a generalized Korteweg-de Vries equation
    Arivazhagan, Anbu
    Sakthivel, Kumarasamy
    Balan, Natesan Barani
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (06): : 823 - 848
  • [42] Approximate Analytical Solution for the Forced Korteweg-de Vries Equation
    David, Vincent Daniel
    Nazari, Mojtaba
    Barati, Vahid
    Salah, Faisal
    Aziz, Zainal Abdul
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [43] Control and stabilization of the Korteweg-de Vries equation: recent progresses
    Rosier, Lionel
    Zhang, Bing-Yu
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2009, 22 (04) : 647 - 682
  • [45] On periodic waves governed by the extended Korteweg-de Vries equation
    Braun, Manfred
    Randrueuet, Merle
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2010, 59 (02) : 133 - 138
  • [46] Infinitely many Lax pairs of the Korteweg-de Vries equation
    Yu, J
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 34 (01) : 189 - 192
  • [47] CONVERGENCE OF A HIGHER ORDER SCHEME FOR THE KORTEWEG-DE VRIES EQUATION
    Dutta, Rajib
    Koley, Ujjwal
    Risebro, Nils Henrik
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 1963 - 1983
  • [48] INTERNAL CONTROLLABILITY OF THE KORTEWEG-DE VRIES EQUATION ON A BOUNDED DOMAIN
    Capistrano-Filho, Roberto A.
    Pazoto, Ademir F.
    Rosier, Lionel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (04) : 1076 - 1107
  • [49] Amplitude modulation of waves governed by Korteweg-de Vries equation
    Le, Khanh Chau
    Lu Trong Khiem Nguyen
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 83 : 117 - 123
  • [50] Limit symmetry of the Korteweg-de Vries equation and its applications
    Da-jun Zhang
    Jian-bing Zhang
    Qing Shen
    Theoretical and Mathematical Physics, 2010, 163 : 634 - 643