Using remote sensing and modeling techniques to investigate the annual parasite incidence of malaria in Loreto, Peru

被引:9
|
作者
Mousam, Aneela [1 ]
Maggioni, Viviana [1 ]
Delamater, Paul L. [2 ]
Quispe, Antonio M. [3 ]
机构
[1] George Mason Univ, Dept Civil Environm & Infrastruct Engn, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Geog & GeoInformat Sci, Fairfax, VA 22030 USA
[3] Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA
关键词
Malaria; Peru; Climate; Environment; Remote sensing; Modeling; SEASONAL DISTRIBUTION; CLIMATE-CHANGE; SOIL-MOISTURE; TRANSMISSION; ALTITUDE; EPIDEMIOLOGY; ELIMINATION; PATTERNS; RAINFALL; IQUITOS;
D O I
10.1016/j.advwatres.2016.11.009
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Between 2001 and 2010 significant progress was made towards reducing the number of malaria cases in Peru; however, the country saw an increase between 2011 and 2015. This work attempts to uncover the associations among various climatic and environmental variables and the annual malaria parasite incidence in the Peruvian region of Loreto. A Multilevel Mixed-effects Poisson Regression model is employed, focusing on the 2009-2013 period, when trends in malaria incidence shifted from decreasing to increasing. The results indicate that variations in elevation (beta=0.78; 95% confidence interval (CI), 0.75-0.81), soil moisture (beta=0.0021; 95% CI, 0.0019-0.0022), rainfall (beta=0.59; 95% CI, 0.56-0.61), and normalized difference vegetation index (beta=2.13; 95% CI, 1.83-2.43) is associated with higher annual parasite incidence, whereas an increase in temperature (beta=-0.0 043; 95% CI, -0.0 044 - -0.0 041) is associated with a lower annual parasite incidence. The results from this study are particularly useful for healthcare workers in Loreto and have the potential of being integrated within malaria elimination plans. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 50 条
  • [41] Irrigation performance using hydrological and remote sensing modeling
    Droogers, P
    Bastiaanssen, W
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2002, 128 (01) : 11 - 18
  • [42] Modeling soil moisture using passive remote sensing
    Soman, V
    Crosson, W
    Laymon, C
    EARTH SURFACE REMOTE SENSING, 1997, 3222 : 121 - 130
  • [43] Runoff Modeling in an Agro-Forested Watershed Using Remote Sensing and GIS
    Gupta, P. K.
    Punalekar, S.
    Panigrahy, S.
    Sonakia, A.
    Parihar, J. S.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2012, 17 (11) : 1255 - 1267
  • [44] Linking the incidence and age patterns of clinical malaria to parasite prevalence using a mathematical model
    Jamie T Griffin
    Neil M Ferguson
    Azra C Ghani
    Malaria Journal, 11 (Suppl 1)
  • [45] Snow parameters modeling using remote sensing techniques and HEC-HMS hydrological modeling—case study: Kan Basin
    Mohammad Roohi
    Mehdi Faeli
    Fariba Jamshidi
    Ali Pourfereydoon Ghasroddashti
    Environmental Monitoring and Assessment, 2023, 195
  • [46] Mangrove mapping and monitoring using remote sensing techniques towards climate change resilience
    Sunkur, Reshma
    Kantamaneni, Komali
    Bokhoree, Chandradeo
    Rathnayake, Upaka
    Fernando, Michael
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [47] Assimilation of remote sensing and hydrological data using adaptive filtering techniques for watershed modelling
    Kumar, Sat
    Sekhar, M.
    Bandyopadhyay, S.
    CURRENT SCIENCE, 2009, 97 (08): : 1196 - 1202
  • [49] THE POSSIBILITY OF USING REMOTE SENSING TECHNIQUES IN GEOMETRIC SURVEYING OF CAVES
    Anita, Kwartnik-Pruc
    Przemyslaw, Kuras
    Rafal, Kocierz
    Lukasz, Ortyl
    Tomasz, Owerko
    GEOCONFERENCE ON INFORMATICS, GEOINFORMATICS AND REMOTE SENSING - CONFERENCE PROCEEDINGS, VOL II, 2013, : 479 - 486
  • [50] Detection of Geothermal Potential Zones Using Remote Sensing Techniques
    Lago Gonzalez, David
    Rodriguez-Gonzalvez, Pablo
    REMOTE SENSING, 2019, 11 (20)