Large-Scale Protein-Protein Interactions Detection by Integrating Big Biosensing Data with Computational Model

被引:36
作者
You, Zhu-Hong [1 ]
Li, Shuai [2 ]
Gao, Xin [3 ]
Luo, Xin [2 ]
Ji, Zhen [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Guangdong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
[3] Suzhou Inst Biomed Engn & Technol, Dept Med Imaging, Suzhou 215163, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
EXTREME LEARNING-MACHINE; INTERACTION MAP; PREDICTION; FRAMEWORK; NETWORK;
D O I
10.1155/2014/598129
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Protein-protein interactions are the basis of biological functions, and studying these interactions on a molecular level is of crucial importance for understanding the functionality of a living cell. During the past decade, biosensors have emerged as an important tool for the high-throughput identification of proteins and their interactions. However, the high-throughput experimental methods for identifying PPIs are both time-consuming and expensive. On the other hand, high-throughput PPI data are often associated with high false-positive and high false-negative rates. Targeting at these problems, we propose a method for PPI detection by integrating biosensor-based PPI data with a novel computational model. This method was developed based on the algorithm of extreme learning machine combined with a novel representation of protein sequence descriptor. When performed on the large-scale human protein interaction dataset, the proposed method achieved 84.8% prediction accuracy with 84.08% sensitivity at the specificity of 85.53%. We conducted more extensive experiments to compare the proposed method with the state-of-the-art techniques, support vector machine. The achieved results demonstrate that our approach is very promising for detecting new PPIs, and it can be a helpful supplement for biosensor-based PPI data detection.
引用
收藏
页数:9
相关论文
共 44 条
[1]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[2]   Increasing the reliability of protein interactomes [J].
Chua, Hon Nian ;
Wong, Limsoon .
DRUG DISCOVERY TODAY, 2008, 13 (15-16) :652-658
[3]   Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae [J].
Collins, Sean R. ;
Kemmeren, Patrick ;
Zhao, Xue-Chu ;
Greenblatt, Jack F. ;
Spencer, Forrest ;
Holstege, Frank C. P. ;
Weissman, Jonathan S. ;
Krogan, Nevan J. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (03) :439-450
[4]   PREDICTION OF PROTEIN-FOLDING CLASS USING GLOBAL DESCRIPTION OF AMINO-ACID-SEQUENCE [J].
DUBCHAK, I ;
MUCHNIK, I ;
HOLBROOK, SR ;
KIM, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8700-8704
[5]  
Edwards AM, 2004, DRUG DISCOV TODAY, V9, pS32
[6]   A protein interaction map of Drosophila melanogaster [J].
Giot, L ;
Bader, JS ;
Brouwer, C ;
Chaudhuri, A ;
Kuang, B ;
Li, Y ;
Hao, YL ;
Ooi, CE ;
Godwin, B ;
Vitols, E ;
Vijayadamodar, G ;
Pochart, P ;
Machineni, H ;
Welsh, M ;
Kong, Y ;
Zerhusen, B ;
Malcolm, R ;
Varrone, Z ;
Collis, A ;
Minto, M ;
Burgess, S ;
McDaniel, L ;
Stimpson, E ;
Spriggs, F ;
Williams, J ;
Neurath, K ;
Ioime, N ;
Agee, M ;
Voss, E ;
Furtak, K ;
Renzulli, R ;
Aanensen, N ;
Carrolla, S ;
Bickelhaupt, E ;
Lazovatsky, Y ;
DaSilva, A ;
Zhong, J ;
Stanyon, CA ;
Finley, RL ;
White, KP ;
Braverman, M ;
Jarvie, T ;
Gold, S ;
Leach, M ;
Knight, J ;
Shimkets, RA ;
McKenna, MP ;
Chant, J ;
Rothberg, JM .
SCIENCE, 2003, 302 (5651) :1727-1736
[7]   Using support vector machine combined with auto covariance to predict proteinprotein interactions from protein sequences [J].
Guo, Yanzhi ;
Yu, Lezheng ;
Wen, Zhining ;
Li, Menglong .
NUCLEIC ACIDS RESEARCH, 2008, 36 (09) :3025-3030
[8]   A simple generalisation of the area under the ROC curve for multiple class classification problems [J].
Hand, DJ ;
Till, RJ .
MACHINE LEARNING, 2001, 45 (02) :171-186
[9]   Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry [J].
Ho, Y ;
Gruhler, A ;
Heilbut, A ;
Bader, GD ;
Moore, L ;
Adams, SL ;
Millar, A ;
Taylor, P ;
Bennett, K ;
Boutilier, K ;
Yang, LY ;
Wolting, C ;
Donaldson, I ;
Schandorff, S ;
Shewnarane, J ;
Vo, M ;
Taggart, J ;
Goudreault, M ;
Muskat, B ;
Alfarano, C ;
Dewar, D ;
Lin, Z ;
Michalickova, K ;
Willems, AR ;
Sassi, H ;
Nielsen, PA ;
Rasmussen, KJ ;
Andersen, JR ;
Johansen, LE ;
Hansen, LH ;
Jespersen, H ;
Podtelejnikov, A ;
Nielsen, E ;
Crawford, J ;
Poulsen, V ;
Sorensen, BD ;
Matthiesen, J ;
Hendrickson, RC ;
Gleeson, F ;
Pawson, T ;
Moran, MF ;
Durocher, D ;
Mann, M ;
Hogue, CWV ;
Figeys, D ;
Tyers, M .
NATURE, 2002, 415 (6868) :180-183
[10]  
Huang GB, 2004, IEEE IJCNN, P985