Prospecting black hole thermodynamics with fractional quantum mechanics

被引:35
|
作者
Jalalzadeh, S. [1 ]
Rodrigues da Silva, F. [1 ,2 ]
Moniz, P. V. [3 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, BR-52171900 Recife, PE, Brazil
[2] Univ Beira Interior, Dept Fis, P-6200 Covilha, Portugal
[3] Ctr Matemat & Aplicacoes CMA UBI, Covilha, Portugal
来源
EUROPEAN PHYSICAL JOURNAL C | 2021年 / 81卷 / 07期
关键词
STATISTICAL-MECHANICS; SCHRODINGER-EQUATION; WAVE-FUNCTION; ENTROPY; SCHWARZSCHILD; SPECTRUM; GRAVITY; QUANTIZATION; TIME; OSCILLATORS;
D O I
10.1140/epjc/s10052-021-09438-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
This paper investigates whether the framework of fractional quantum mechanics can broaden our perspective of black hole thermodynamics. Concretely, we employ a space-fractional derivative (Riesz in Acta Math 81:1, 1949) as our main tool. Moreover, we restrict our analysis to the case of a Schwarzschild configuration. From a subsequently modified Wheeler-DeWitt equation, we retrieve the corresponding expressions for specific observables. Namely, the black hole mass spectrum, M, its temperature T, and entropy, S. We find that these bear consequential alterations conveyed through a fractional parameter, alpha. In particular, the standard results are recovered in the specific limit alpha =2. Furthermore, we elaborate how generalizations of the entropy-area relation suggested by Tsallis and Cirto (Eur Phys J C 73:2487, 2013) and Barrow (Phys Lett B 808:135643, 2020) acquire a complementary interpretation in terms of a fractional point of view. A thorough discussion of our results is presented.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Prospecting black hole thermodynamics with fractional quantum mechanics
    S. Jalalzadeh
    F. Rodrigues da Silva
    P. V. Moniz
    The European Physical Journal C, 2021, 81
  • [2] Black Hole Thermodynamics and Statistical Mechanics
    Carlip, S.
    PHYSICS OF BLACK HOLES: A GUIDED TOUR, 2009, 769 : 89 - 123
  • [3] Statistical mechanics and black hole thermodynamics
    Carlip, S
    NUCLEAR PHYSICS B, 1997, : 8 - 12
  • [4] Quantum black hole thermodynamics
    Majumdar, Parthasarathi
    CHAOS, NONLINEARITY, COMPLEXITY: THE DYNAMICAL PARADIGM OF NATURE, 2006, 206 : 218 - 246
  • [5] Quantum mechanics of a black hole
    Gour, G
    PHYSICAL REVIEW D, 2000, 61 (12):
  • [6] Black hole thermodynamics from entanglement mechanics
    Chandran, S. Mahesh
    Shankaranarayanan, S.
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 1223 - 1237
  • [7] Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation
    Azizi, A.
    Camblong, H. E.
    Chakraborty, A.
    Ordonez, C. R.
    Scully, M. O.
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [8] Thermodynamics of the quantum Schwarzschild black hole
    Balart, Leonardo
    Panotopoulos, Grigoris
    Rincon, Angel
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [9] Higher Derivative Corrections to Black Hole Thermodynamics from Supersymmetric Matrix Quantum Mechanics
    Hanada, Masanori
    Hyakutake, Yoshifumi
    Nishimura, Jun
    Takeuchi, Shingo
    PHYSICAL REVIEW LETTERS, 2009, 102 (19)
  • [10] Lectures on black hole quantum mechanics
    Wilczek, F
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (31): : 5279 - 5372