Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a p-type low bandgap double perovskite oxide

被引:18
作者
Kumar, Pawan [1 ]
Mulmi, Suresh [2 ]
Laishram, Devika [1 ,3 ]
Alam, Kazi M. [1 ]
Thakur, Ujwal K. [1 ]
Thangadurai, Venkataraman [2 ]
Shankar, Karthik [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, 9211-116 St, Edmonton, AB T6G 1H9, Canada
[2] Univ Calgary, Dept Chem, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[3] Indian Inst Technol Jodhpur, Dept Chem, Jodhpur 342011, Rajasthan, India
基金
加拿大自然科学与工程研究理事会;
关键词
hole transporting metal oxides; type-II semiconductor heterojunction; photocatalysis; graphitic carbon nitride; narrow bandgap semiconductor; electrochemical impedance spectroscopy; PHOTOCATALYTIC HYDROGEN EVOLUTION; GRAPHENE OXIDE; QUANTUM DOTS; ARTIFICIAL PHOTOSYNTHESIS; SUPERIOR PERFORMANCE; CHARGE SEPARATION; OXYGEN REDUCTION; LAYER NUMBER; CO2; NANOSHEETS;
D O I
10.1088/1361-6528/abedec
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quinary and senary non-stoichiometric double perovskites such as Ba2Ca0.66Nb1.34-x Fe (x) O6-delta (BCNF) have been utilized for gas sensing, solid oxide fuel cells and thermochemical CO2 reduction. Herein, we examined their potential as narrow bandgap semiconductors for use in solar energy harvesting. A cobalt co-doped BCNF, Ba2Ca0.66Nb0.68Fe0.33Co0.33O6-delta (BCNFCo), exhibited an optical absorption edge at similar to 800 nm, p-type conduction and a distinct photoresponse up to 640 nm while demonstrating high thermochemical stability. A nanocomposite of BCNFCo and g-C3N4 (CN) was prepared via a facile solvent-assisted exfoliation/blending approach using dichlorobenzene and glycerol at a moderate temperature. The exfoliation of g-C3N4 followed by wrapping on perovskite established an effective heterojunction between the materials for charge separation. The conjugated 2D sheets of CN enabled better charge migration resulting in increased photoelectrochemical performance. A blend composed of 40 wt% perovskites and CN performed optimally, whilst achieving a photocurrent density as high as 1.5 mA cm(-2) for sunlight-driven water-splitting with a Faradaic efficiency as high as similar to 88%.
引用
收藏
页数:17
相关论文
共 130 条
[1]   Hydrogen from photo-catalytic water splitting process: A review [J].
Ahmad, H. ;
Kamarudin, S. K. ;
Minggu, L. J. ;
Kassim, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 43 :599-610
[2]   Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunlight-driven water-splitting [J].
Alam, Kazi M. ;
Kumar, Pawan ;
Kar, Piyush ;
Goswami, Ankur ;
Thakur, Ujwal K. ;
Zeng, Sheng ;
Vahidzadeh, Ehsan ;
Cui, Kai ;
Shankar, Karthik .
NANOTECHNOLOGY, 2020, 31 (08)
[3]   Enhanced charge separation in g- C3N4- BiOI heterostructures for visible light driven photoelectrochemical water splitting [J].
Alam, Kazi M. ;
Kumar, Pawan ;
Kar, Piyush ;
Thakur, Ujwal K. ;
Zeng, Sheng ;
Cui, Kai ;
Shankar, Karthik .
NANOSCALE ADVANCES, 2019, 1 (04) :1460-1471
[4]   Oxygen isotope exchange and diffusion in LnBaCo2O6-δ (Ln = Pr, Sm, Gd) with double perovskite structure [J].
Ananyev, M. V. ;
Eremin, V. A. ;
Tsvetkov, D. S. ;
Porotnikova, N. M. ;
Farlenkov, A. S. ;
Zuev, A. Yu. ;
Fetisov, A. V. ;
Kurumchin, E. Kh. .
SOLID STATE IONICS, 2017, 304 :96-106
[5]   Pathways to electrochemical solar-hydrogen technologies [J].
Ardo, Shane ;
Rivas, David Fernandez ;
Modestino, Miguel A. ;
Greiving, Verena Schulze ;
Abdi, Fatwa F. ;
Alarcon Llado, Esther ;
Artero, Vincent ;
Ayers, Katherine ;
Battaglia, Corsin ;
Becker, Jan-Philipp ;
Bederak, Dmytro ;
Berger, Alan ;
Buda, Francesco ;
Chinello, Enrico ;
Dam, Bernard ;
Di Palma, Valerio ;
Edvinsson, Tomas ;
Fujii, Katsushi ;
Gardeniers, Han ;
Geerlings, Hans ;
Hashemi, S. Mohammad H. ;
Haussener, Sophia ;
Houle, Frances ;
Huskens, Jurriaan ;
James, Brian D. ;
Konrad, Kornelia ;
Kudo, Akihiko ;
Kunturu, Pramod Patil ;
Lohse, Detlef ;
Mei, Bastian ;
Miller, Eric L. ;
Moore, Gary F. ;
Muller, Jiri ;
Orchard, Katherine L. ;
Rosser, Timothy E. ;
Saadi, Fadl H. ;
Schuttauf, Jan-Willem ;
Seger, Brian ;
Sheehan, Stafford W. ;
Smith, Wilson A. ;
Spurgeon, Joshua ;
Tang, Maureen H. ;
van de Krol, Roel ;
Vesborg, Peter C. K. ;
Westerik, Pieter .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2768-2783
[6]   Effect of deposition conditions on the chemical bonding in sputtered carbon nitride films [J].
Axen, N ;
Botton, GA ;
Somekh, RE .
DIAMOND AND RELATED MATERIALS, 1996, 5 (02) :163-168
[7]   Organic motifs functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis [J].
Chauhan, Deepak Kumar ;
Jain, Sanjhal ;
Battula, Venugopala Rao ;
Kailasam, Kamalakannan .
CARBON, 2019, 152 :40-58
[8]   A binary solvent system for improved liquid phase exfoliation of pristine graphene materials [J].
Chen, Jianping ;
Shi, Weili ;
Fang, Dong ;
Wang, Tao ;
Huang, Jing ;
Li, Qi ;
Jiang, Ming ;
Liu, Lei ;
Li, Qiong ;
Dong, Lijie ;
Wang, Qing ;
Xiong, Chuanxi .
CARBON, 2015, 94 :405-411
[9]   Vibrational properties of carbon nitride films by Raman spectroscopy [J].
Chowdhury, AKMS ;
Cameron, DC ;
Hashmi, MSJ .
THIN SOLID FILMS, 1998, 332 (1-2) :62-68
[10]   Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution [J].
Cui, Yanjuan ;
Zhang, Jinshui ;
Zhang, Guigang ;
Huang, Jianhui ;
Liu, Ping ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) :13032-13039