Cationic lipid nanodisks as an siRNA delivery vehicle

被引:35
作者
Ghosh, Mistuni [1 ]
Ren, Gang [2 ]
Simonsen, Jens B. [1 ]
Ryan, Robert O. [1 ]
机构
[1] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
关键词
nanodisk; 1; 2-dimyristoyl-3-trimethylammonium-propane; cationic lipid; siRNA; apolipoprotein; delivery and HepG2 cells; IN-VIVO DELIVERY; RNAI; EXPRESSION; DESIGN; TARGET;
D O I
10.1139/bcb-2014-0027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The term nanodisk (ND) describes reconstituted high-density lipoprotein particles that contain one or more exogenous bioactive agents. In the present study, ND were assembled from apolipoprotein A-I, the zwitterionic glycerophospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the synthetic cationic lipid 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP). ND formulated at a DMPC: DMTAP ratio of 70:30 (by weight) were soluble in aqueous media. The particles generated were polydisperse, with diameters ranging from similar to 20 to <50 nm. In nucleic acid binding studies, agarose gel retardation assays revealed that a synthetic 23-mer double-stranded oligonucleotide (dsOligo) bound to DMTAP containing ND but not to ND formulated with DMPC alone. Sucrose density gradient ultracentrifugation studies provided additional evidence for stable dsOligo binding to DMTAP-ND. Incubation of cultured hepatoma cells with DMTAP-ND complexed with a siRNA directed against glyceraldehyde 3-phosphate dehydrogenase showed 60% knockdown efficiency. Thus, incorporation of synthetic cationic lipid (i.e., DMTAP) to ND confers an ability to bind siRNA and the resulting complexes possess target gene knockdown activity in a cultured cell model.
引用
收藏
页码:200 / 205
页数:6
相关论文
共 40 条
[1]   Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo [J].
Andaloussi, Samir E. L. ;
Lehto, Taavi ;
Maeger, Imre ;
Rosenthal-Aizman, Katri ;
Oprea, Iulian I. ;
Simonson, Oscar E. ;
Sork, Helena ;
Ezzat, Kariem ;
Copolovici, Dana M. ;
Kurrikoff, Kaido ;
Viola, Joana R. ;
Zaghloul, Eman M. ;
Sillard, Rannar ;
Johansson, Henrik J. ;
Hassane, Fatouma Said ;
Guterstam, Peter ;
Suhorutsenko, Julia ;
Moreno, Pedro M. D. ;
Oskolkov, Nikita ;
Haelldin, Jonas ;
Tedebark, Ulf ;
Metspalu, Andres ;
Lebleu, Bernard ;
Lehtioe, Janne ;
Smith, C. I. Edvard ;
Langel, Uelo .
NUCLEIC ACIDS RESEARCH, 2011, 39 (09) :3972-3987
[2]   Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes [J].
Auguste, Debra T. ;
Furman, Kay ;
Wong, Andrew ;
Fuller, Jason ;
Armes, Steven P. ;
Deming, Timothy J. ;
Langer, Robert .
JOURNAL OF CONTROLLED RELEASE, 2008, 130 (03) :266-274
[3]   Safety profile of RNAi nanomedicines [J].
Barros, Scott A. ;
Gollob, Jared A. .
ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 (15) :1730-1737
[4]   Membrane protein assembly into Nanodiscs [J].
Bayburt, Timothy H. ;
Sligar, Stephen G. .
FEBS LETTERS, 2010, 584 (09) :1721-1727
[5]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[6]   High-Density Lipoprotein-Mediated Anti-Atherosclerotic and Endothelial-Protective Effects: A Potential Novel Therapeutic Target in Cardiovascular Disease [J].
Besler, Christian ;
Heinrich, Kathrin ;
Riwanto, Meliana ;
Luescher, Thomas F. ;
Landmesser, Ulf .
CURRENT PHARMACEUTICAL DESIGN, 2010, 16 (13) :1480-1493
[7]   Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles [J].
Davis, Mark E. ;
Zuckerman, Jonathan E. ;
Choi, Chung Hang J. ;
Seligson, David ;
Tolcher, Anthony ;
Alabi, Christopher A. ;
Yen, Yun ;
Heidel, Jeremy D. ;
Ribas, Antoni .
NATURE, 2010, 464 (7291) :1067-U140
[8]   Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting [J].
De Paula, Daniel ;
Bentley, M. Vitoria L. B. ;
Mahato, Ram I. .
RNA, 2007, 13 (04) :431-456
[9]   An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei [J].
Djikeng, A ;
Shi, HF ;
Tschudi, C ;
Shen, SY ;
Ullu, E .
RNA, 2003, 9 (07) :802-808
[10]   Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy [J].
Dou, Shuang ;
Yao, Yan-Dan ;
Yang, Xian-Zhu ;
Sun, Tian-Meng ;
Mao, Cheng-Qiong ;
Song, Er-Wei ;
Wang, Jun .
JOURNAL OF CONTROLLED RELEASE, 2012, 161 (03) :875-883